Skip to main content
Log in

Structural refinement, optical and electrical properties of [Ba1−x Sm2x/3](Zr0.05Ti0.95)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Samarium doped barium zirconate titanate ceramics with general formula [Ba1−x Sm2x/3](Zr0.05Ti0.95)O3 [x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model [BaO12], [SmO12], [ZrO6], and [TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie–Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet–visible diffuse reflectance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1−x Zr x )O3 ceramics. J. Appl. Phys. 92, 1489–1493 (2002)

    Article  Google Scholar 

  2. T.B. Wu, C.M. Wu, M.L. Chen, Highly insulative barium zirconate-titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications. Appl. Phys. Lett. 69, 2659 (1996)

    Article  Google Scholar 

  3. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics, Sol. State Commun. 131, 163–168 (2004)

  4. H. Tian, C. Hu, Q. Chen, Z. Zhou, High, purely electrostrictive effect in cubic K0.95Na0.05Ta1−x Nb x O3 lead-free single crystals. Mater. Lett. 68, 14–16 (2012)

    Article  Google Scholar 

  5. B. Wang, C. Yang, H. Chen, J. Zhang, A. Yu, R. Zhang, Effects of oxygen to argon ratio on Ba(Zr0.2Ti0.8)O3 thin films prepared by RF magnetron sputtering. J. Mater. Sci. Mater. Elect, 20(7), 614–618 (2009)

  6. M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics. J Mater. Sci. Mater. Elect. 24(12), 4684–4692 (2013)

  7. P.A. Jha, A.K. Jha, Effect of sintering temperature on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. J. Mater. Sci. Mater. Electr. 25(5), 2305–2310 (2014)

  8. S. Sen, R.N.P. Choudhary, Structural, dielectric and electrical properties of Ca modified BaSn0.15Ti0.85O3 ceramics. J. Mater. Sci. 40, 5457–5462 (2005)

    Article  Google Scholar 

  9. N. Ding, X.G. Tang, X.D. Ding, Q.X. Liu, Y.P. Jiang, L.L. Jiang, Effect of Zr/Ti ratio on the dielectric and piezoelectric properties of Mn-doped Ba(Zr,Ti)O3 ceramics. J. Mater. Sci. Mater. Electr. 25(5), 2305–2310 (2014)

  10. L. Cao, W. Wang, G. Su, W. Liu, Synthesis, microstructure and dielectric properties of zirconium doped barium strontium titanate obtained by solvothermal method. J. Mater. Sci. Mater. Electr. 24(7), 2234–2239 (2013)

  11. Y. Wang, L. Li, J. Qi, Z. Gui, Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram. Int. 28, 657–661 (2002)

    Article  Google Scholar 

  12. W. Li, Z. Xu, R. Chu, P. Fu, P. An, Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram. Inter. 38, 4353–4355 (2012)

    Article  Google Scholar 

  13. D. Shan, Y.F. Qu, J.J. Song, Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics. Solid State Commun. 141, 65–68 (2007)

    Article  Google Scholar 

  14. S. Bhaskar-Reddy, M.S. Ramachandra-Rao, K. Prasad-Rao, Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics. Appl. Phys. Lett. 91, 022917–022919 (2007)

    Article  Google Scholar 

  15. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106–084111 (2007)

    Article  Google Scholar 

  16. K. Aliouane, A. Guehria-Laidoudi, A. Simon, J. Ravez, Study of new relaxor materials in BaTiO3–BaZrO3–La2/3TiO3 system. Solid State Sci. 7, 1324–1332 (2005)

    Article  Google Scholar 

  17. F. Moura, A.Z. Simões, L.S. Cavalcante, M. Zampieri, J.A. Varela, E. Longo, M.A. Zaghete, M.L. Simões, Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr0.10Ti0.90]O3 ceramics. Appl. Phys. Lett. 92, 032905–032907 (2008)

    Article  Google Scholar 

  18. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3. J. Eur. Ceram. Soc. 19, 1043–1046 (1999)

    Article  Google Scholar 

  19. S. Shirasaki, Origin of semiconductng behavior in rare-earth-doped barium titanate. Solid State Commun. 19(721), 721–724 (1976)

    Article  Google Scholar 

  20. N.V. Dergunova, E.G. Fesenko, V.P. Sakhnenko, Rendering barium titanate semiconductive by doping with rare earth elements. Ferroelectrics 83, 187–191 (1988)

    Article  Google Scholar 

  21. K. Watanabe, H. Ohsato, H. Kishi Y Okino, N. Kohzu, Y. Lguchi, T. Okuda, Solubility of La–Mg and La–Al in BaTiO3. Solid State Ionics 108, 129–135 (1998)

  22. J. Zhu, W.J. Jie, X.H. Wei, W.F. Qin, Y. Zhang, Y.R. Li, Enhanced dielectric characteristics of manganese-doped BZT thin films. Surf. Rev. Lett. 15, 29–33 (2008)

    Article  Google Scholar 

  23. R. Sagar, P. Hudge, S. Madolappa, A.C. Kumbharkhane, R.L. Raibagkar, Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics. J. Alloys Compd. 537, 197–202 (2012)

    Article  Google Scholar 

  24. F. Moura, A.Z. Simões, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo, Ferroelectric and dielectric properties of vanadium-doped Ba(Ti0.90Zr0.10)O3 ceramics. J Alloys Compd. 466, L15–L18 (2008)

    Article  Google Scholar 

  25. C. Ostos, L. Mestres, M.L. Martinez-Sarrión, J.E. Garcia, A. Albareda, R. Perez, Synthesis and characterization of A-site deficient rare-earth doped BaZr x Ti1−x O3 perovskite-type compounds. Solid State Sci. 11, 1016–1022 (2009)

  26. W. Cai, C. Fu, J.J. Gao, Effect of Mn doping on the dielectric properties of BaZr0.2Ti0.8O3 ceramics. J Mater. Sci. Mater. Electron. 21, 317–325 (2010)

  27. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics. J. Phys. D Appl. Phys. 42, 065413–065422 (2009)

    Article  Google Scholar 

  28. S. Mahajan, O.P. Thakur, K. Sreenivas, C. Prakash, Effect of Nd doping on structural, dielectric and ferroelectric properties of Ba(Zr0.05Ti0.95)O3 ceramic, Int. Ferroelectrics 122, 83–89 (2010)

    Article  Google Scholar 

  29. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, A comparative study of Ba0.95Ca0.05Zr0.25Ti0.75O3 relaxor ceramics prepared by conventional and microwave sintering techniques. Mater. Chem. Phys. 112, 858–862 (2008)

    Article  Google Scholar 

  30. J. Joseph, T.M. Vimala, J. Raju, V.R.K. Murthy, Structural investigations on the (Ba,Sr)(Zr,Ti)O3 system. J. Phys. D Appl. Phys. 32, 1049–1057 (1999)

    Article  Google Scholar 

  31. A.K. Kalyani, A. Senyshyn, R. Ranjan, Polymorphic phase boundaries and enhanced piezoelectric response in extended composition range in the lead free ferroelectric BaTi1−x Zr x O3. J. Appl. Phys. 114, 014102 (2013)

    Article  Google Scholar 

  32. http://en.wikipedia.org/wiki/Octahedron

  33. C. Duan, J. Yuan, J. Zhao, Luminescence properties of efficient X-ray phosphors of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3. J. Solid State Chem. 178, 3698–3702 (2005)

    Article  Google Scholar 

  34. http://en.wikipedia.org/wiki/Cuboctahedron

  35. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa, J. Moori, Defect structure and oxygen diffusion in undoped and La doped polycrystalline barium titanate. J. Chem. Phys. 73, 4640–4645 (1980)

    Article  Google Scholar 

  36. A.F. Shimanskij, M. Drofenik, D. Kolar, Subsolidus grain growth in donor doped barium titanate. J. Mater. Sci. 29, 6301–6305 (1994)

    Article  Google Scholar 

  37. W. Yang, Y. Pu, X. Chen, J. Wang, Study of reoxidation in heavily La-doped barium titanate ceramics. J. Phys. Conf. Series. 152, 012040–012045 (2009)

    Article  Google Scholar 

  38. M.N. Rahaman, Ceramic processing and sintering, 2nd edn. (CRC Press, New York, 2005)

  39. S.J.L. Kang, Sintering densification, grain growth, and microstructure, 1st edn. (Elsevier, Oxford, 2005)

  40. T. Nakamura, T. Sakudo, Y. Ishibashi, Y. Tominaga, Ferroelectricity involved in structural phase transition, 1st edn. (Syokabo, Japan, 1988)

    Google Scholar 

  41. M.D. Domenico Jr, S.H. Wemple, S.P.S. Porto, P.R. Buman, Raman spectrum of single-domain BaTiO3. Phys. Rev. 174, 522–530 (1968)

    Article  Google Scholar 

  42. A. Chaves, R.S. Katiyar, S.P.S. Porto, Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys. Rev. B. 10, 3522–3533 (1974)

    Article  Google Scholar 

  43. P.S. Dobal, A. Dixit, R.S. Katiyar, Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J. Raman Spectrosc. 38, 142–146 (2007)

    Article  Google Scholar 

  44. Y. Liu, Y. Feng, X. Wu, X. Han, Microwave absorption properties of La doped barium titanate in X-band. J. Alloys Compd. 472, 441–445 (2009)

    Article  Google Scholar 

  45. D. Shan, Y.F. Qu, J.J. Song, Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics. Solid State Commun. 141, 65–68 (2007)

    Article  Google Scholar 

  46. W. Cai, C. Fu, J. Gao, Z. Lin, X. Deng, Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3 ceramics. Ceram. Int. 38, 3367–3375 (2012)

    Article  Google Scholar 

  47. X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, R. Perez, Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics. Mater. Chem. Phys. 125, 493–499 (2011)

    Article  Google Scholar 

  48. F.D. Morrison, D.C. Sinclair, A.R. West, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  Google Scholar 

  49. A.V. Bune, C. Zhu, S. Ducharme, L.M. Blinov, V.M. Fridkin, Piezoelectric and pyroelectric properties of ferroelectric Langmuir–Blodgett polymer films, J. Appl. Phys. 85, 7869–7873 (1999)

  50. S. Tsurekawa, K. Ibaraki, K. Kawahara, T. Watanabe, The continuity of ferroelectric domains at grain boundaries in lead zirconate titanate. Scrip. Mater. 56, 577–580 (2007)

    Article  Google Scholar 

  51. Y. Chang, Z. Yang, L. Wei, Microstructure, density, and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−x Ta x Sb0.04)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 90, 1656–1658 (2007)

    Article  Google Scholar 

  52. K. Ramam, M. Lopez, Microstructure, dielectric and electromechanical properties of PLSZFT nanoceramics for piezoelectric applications. J. Mater. Sci.: Mater. Electron. 19, 1140–1145 (2008)

    Google Scholar 

  53. P.A. Jha, A.K. Jha, Effects of yttrium substitution on structural and electrical properties of barium zirconate titanate ferroelectric ceramics. Curr. Appl. Phys. 13, 1413–1419 (2013)

    Article  Google Scholar 

  54. P. Kubelka, F. Munk-Aussig, Ein Beitrag zur Optik der Farban striche. Zeit. Für. Tech. Physik. 12, 593–601 (1931)

    Google Scholar 

  55. A.E. Morales, E.S. Mora, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. U. Pal, Rev. Mex. Fis. S. 53, 18–22 (2007)

  56. R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, London, 1978)

    Google Scholar 

  57. L.S. Cavalcante, N.C. Batista, T. Badapanda, M.G.S. Costa, M.S. Li, W. Avansi, V.R. Mastelaro, E. Longo, J.W.M. Espinosa, M.F.C. Gurgel, Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders. Mater. Sci. Semicond. Process. 16, 1035–1045 (2013)

    Article  Google Scholar 

  58. L.S. Cavalcante, M.F.C. Gurgel, E.C. Paris, A.Z. Simões, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo, Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films. Acta Mater. 55, 6416–6426 (2007)

    Article  Google Scholar 

  59. M. Anicete-Santos, L.S. Cavalcante, E. Orhan, E.C. Paris, L.G.P. Simões, M.R. Joya, I.L.V. Rosa, P.R. de Lucena, M.R.M.C. Santos, L.S. Santos-Júnior, P.S. Pizani, E. R. Leite, J.A. Varela, E. Longo, The role of structural order–disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films. Chem. Phys. 316, 260–266 (2005)

  60. C. Laulhé, F. Hippert, R. Bellissent, A. Simon, G.J. Cuello, Local structure in BaTi1−xZrxO3 relaxors from neutron pair distribution function analysis. Phys. Rev. B. 79, 064104–064113 (2009)

  61. S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, T.P. Sinha, Structural, optical and dielectric relaxor properties of neodymium doped cubic perovskite Ba1− xNd2 x /3)(Zr0.3Ti0.7)O3. Solid State Sci. 30, 68–77 (2014)

    Article  Google Scholar 

  62. S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Characterization of A-site deficient samarium doped barium titanate. Phys. B 411, 26–34 (2013)

    Article  Google Scholar 

  63. M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. J. Phys. Chem. A 112, 8938–8942 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The Brazilian authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (304531/2013-8; 479644/2012-8), CNPq-GERATEC (555684/2009-1), FAPESP, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Badapanda or L. S. Cavalcante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badapanda, T., Sarangi, S., Behera, B. et al. Structural refinement, optical and electrical properties of [Ba1−x Sm2x/3](Zr0.05Ti0.95)O3 ceramics. J Mater Sci: Mater Electron 25, 3427–3439 (2014). https://doi.org/10.1007/s10854-014-2035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2035-7

Keywords

Navigation