Skip to main content
Log in

Lead-free vanadium-substituted (K0.485Na0.5Li0.015)(Nb0.9Ta0.1)O3 piezoceramics synthesized from nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free, alkaline niobate-based piezoelectric ceramics substituted with vanadium (K0.485Na0.5Li0.015)(Nb0.9−x Ta0.1V x )O3 (x = 0, 0.05, 0.10, 0.15 and 0.2) were synthesized from nanocrystalline powders by traditional solid state sintering technique. The base composition chosen is among those recently reported to show high piezoelectric properties. The nanocrystalline powders were produced by high energy ball milling. The crystalline phase of all the ceramics prepared was found to be perovskite with orthorhombic symmetry. Without any sintering aid, the bulk density of 97 % of the theoretical density was obtained for the ceramics with no vanadium. The optimum sintering temperature for all compositions was achieved at a low value of 1,050 °C. In the composition range studied, increasing V5+ content in the ceramics gives rise to a gradual decrease in room temperature dielectric constant (ε r ) from 1,193 to 474, remnant polarization (P r ) from 12.9 to 5.6 μC/cm2, electromechanical coupling factor (k p ) from 0.45 to 0.32, and piezoelectric charge constant (d 33) from 156 to 53 pC/N. The decrease in these parameters is attributed to the associated decrease in density and grain size of the ceramics with increasing V5+ content. Increasing V5+ content from 0 to 0.15 results in an increase in the coercive field from 9.9 to 15.5 kV/cm, thereby, making the ceramics harder in this range of composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000)

    Article  Google Scholar 

  2. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate–bismuth potassium titanate–barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401–7403 (2003)

    Article  Google Scholar 

  3. M. Suzuki, H. Nagata, J. Ohara, H. Funakubo, T. Takenaka, Bi3−xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn. J. Appl. Phys. 42, 6090–6093 (2003)

    Article  Google Scholar 

  4. R.J. Xie, Y. Akimune, R. Wang, N. Hirosaki, T. Nishimura, Dielectric and piezoelectric properties of barium-substituted Sr1.9Ca0.1NaNb5O15 ceramic. Jpn. J. Appl. Phys. 42, 7404–7409 (2003)

    Article  Google Scholar 

  5. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. Jpn. J. Appl. Phys. 92, 1489–1493 (2002)

    Article  Google Scholar 

  6. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)

    Article  Google Scholar 

  7. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl. Phys. 44, 258–263 (2005)

    Article  Google Scholar 

  8. M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  9. Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  Google Scholar 

  10. M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335–340 (1975)

    Article  Google Scholar 

  11. R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Stat. Sol. A 202, R57–R59 (2005)

    Article  Google Scholar 

  12. R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  Google Scholar 

  13. G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)

    Article  Google Scholar 

  14. L. Egerton, C.A. Bieling, Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968)

    Google Scholar 

  15. H.Y. Park, C.W. Ahn, H.C. Song, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3− 0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(062906), 1–3 (2006)

    Google Scholar 

  16. Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  Google Scholar 

  17. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905/1–182905/3 (2005)

    Article  Google Scholar 

  18. S. Zhang, J.B. Lim, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1523–1527 (2009)

    Article  Google Scholar 

  19. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)

    Article  Google Scholar 

  20. F.R. Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045–3052 (2009)

    Article  Google Scholar 

  21. D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Ceram. Soc. 93, 941–944 (2010)

    Article  Google Scholar 

  22. R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3–LiNbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 4018–4021 (2010)

    Article  Google Scholar 

  23. K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloy. Compd. 496, 717–722 (2010)

    Article  Google Scholar 

  24. D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 101, 074111–074116 (2007)

    Article  Google Scholar 

  25. M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(114105), 1–5 (2005)

    Google Scholar 

  26. P. Guo, K. Kakimoto, H. Ohsato, Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics. Mater. Lett. 59, 241–244 (2005)

    Article  Google Scholar 

  27. X. Zhai, H. Wang, J. Xu, C. Yuan, X. Zhang, C. Zhou, X. Liu, Effect of V2O5 doping on the structure and properties lead-free KNN-LS-BF piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 24, 687–691 (2013)

    Article  Google Scholar 

  28. H. Wang, X. Zhai, J. Xu, C. Yuan, L. Yang, Temperature stability of V2O5-Doped KNN-LS-BF lead-free piezoelectric ceramics. J. Electron. Mater. 42, 2556–2559 (2013)

    Article  Google Scholar 

  29. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead free (KNa)(NbTa)O3. J. Am. Ceram. Soc. 88, 1190–1196 (2005)

    Article  Google Scholar 

  30. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44, 6136–6142 (2005)

    Article  Google Scholar 

  31. N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3 solid solution systems. J. Electroceramics 18, 339–346 (2007)

    Article  Google Scholar 

  32. G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics. Mater. Lett. 61, 4185–4187 (2007)

    Article  Google Scholar 

  33. G.Z. Zhang, L.B. Li, X. Yi, J. Du, Y. Li, Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3)xNb1−xO3 piezoceramics. J. Mater. Sci. Mater. Electron. 23, 977–980 (2012)

    Article  Google Scholar 

  34. X. Pang, J. Qiu, K. Zhu, J. Du, Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 23, 1083–1086 (2012)

    Article  Google Scholar 

  35. D. Lin, K.W. Kwok, Structure and piezoelectric properties of K0.5Na0.5NbO3–Bi0.5Li0.5TiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 23, 501–505 (2012)

    Article  Google Scholar 

  36. H.C. Song, K.H. Cho, H.W. Park, C.W. Ahn, S. Nahm, K. Uchino, S.H. Park, H.G. Lee, Microstructure and piezoelectric properties of (1 − x)(Na0.5K0.5)NbO3xLiNbO3 ceramics. J. Am. Ceram. Soc. 90, 1812–1816 (2007)

    Article  Google Scholar 

  37. Y. Zhen, J.F. Li, Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669–3675 (2006)

    Article  Google Scholar 

  38. R. Zuo, J. Rodel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 2010–2015 (2006)

    Article  Google Scholar 

  39. R. Gaur, K.C. Singh, R. Laishram, Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J. Mater. Sci. 48, 5607–5613 (2013)

    Article  Google Scholar 

  40. R.Z. Zuo, J. Fu, D.Y. Lu, Y. Liu, Antimony tuned rhombohedral–orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 93, 2783–2787 (2010)

    Article  Google Scholar 

  41. S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by Pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)

    Article  Google Scholar 

  42. J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev. B 72, 172101 (2005)

    Article  Google Scholar 

  43. H. Huang, C.Q. Sun, T.S. Zhang, H. Peter, Grain-size effect on ferroelectric Pb(Zr1−x Ti x )O3 solid solutions induced by surface bond contraction. Phys. Rev. B 63, 184112 (2001)

    Article  Google Scholar 

  44. C. Leu, C.Y. Chen, C.H. Chien, Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Appl. Phys. Lett. 82, 3493–3495 (2003)

    Article  Google Scholar 

  45. W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011)

    Article  Google Scholar 

  46. S.E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)

    Article  Google Scholar 

  47. H. Birol, D. Damjanovic, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)

    Article  Google Scholar 

  48. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30–L32 (2006)

    Article  Google Scholar 

  49. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Department of Science and Technology, India, under the Research Project No. SR/S2/CMP-0017/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandramani Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, R., Sangal, M., Dwivedi, A. et al. Lead-free vanadium-substituted (K0.485Na0.5Li0.015)(Nb0.9Ta0.1)O3 piezoceramics synthesized from nanopowders. J Mater Sci: Mater Electron 25, 3195–3202 (2014). https://doi.org/10.1007/s10854-014-2003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2003-2

Keywords

Navigation