Skip to main content
Log in

Structural and piezoelectric properties of barium-modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ferroelectric (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 + x mol% BaCO3 ceramic compositions with Ba2+ as an A-site dopant in the range of x = 0–1.2 mol% were synthesized by conventional ceramic processing route. Effect of Ba2+ content on the microstructure, ferroelectric, dielectric, and piezoelectric properties of the ceramics was investigated. The results of X-ray diffraction reveal that Ba2+ diffuse into the (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 lattices to form a solid solution with a perovskite structure having typical orthorhombic symmetry. As Ba2+ content increases, cell volume and tetragonality increase in the crystal structure of the ceramics. Increasing doping level of Ba2+ inhibits grain growth in the ceramics and reduces both the Curie temperature (T c) and tetragonal–orthorhombic phase transition temperature (T o-t). The bulk density, remnant polarization P r, room-temperature dielectric constant (εRT), planar electromechanical coupling factor k p , and piezoelectric charge coefficient d 33 are found to increase as Ba2+ concentration increases from 0 to 0.8 mol% and then decrease as Ba2+ content increases further from 0.8 to 1.2 mol%. High piezoelectric properties of d 33 = 187 pC/N and k p  = 48 % are found in 0.8 mol% Ba2+ composition. Optimum amount of Ba2+ dopant takes the polymorphic phase boundary region consisting of orthorhombic and tetragonal crystal structures of the ceramic system near the room temperature and enhances its piezoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New York, p 115

    Google Scholar 

  2. Tressler JF, Alkoy S, Newnham RE (1998) J Electroceram 2:257

    Article  CAS  Google Scholar 

  3. Gomah-Pettry J-R, Said S, Marchet P, Mercurio J-P (2004) J Eur Ceram Soc 4:1165

    Article  Google Scholar 

  4. Liu W, Ren X (2009) Phys Rev Lett 103:257602

    Article  Google Scholar 

  5. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87:182905

    Article  Google Scholar 

  6. Ichiki M, Zhang L, Tanaka M, Maeda R (2004) J Eur Ceram Soc 24:1693

    Article  CAS  Google Scholar 

  7. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84

    Article  CAS  Google Scholar 

  8. Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005) J Am Ceram Soc 88:1190

    Article  CAS  Google Scholar 

  9. Matsubara M, Kikuta K, Hirano S (2005) J Appl Phys 97:114105

    Article  Google Scholar 

  10. Li JF, Wang K, Zhang BP, Zhang LM (2006) J Am Ceram Soc 89:706

    Article  CAS  Google Scholar 

  11. Jaeger RE, Egerton L (1962) J Am Ceram Soc 45:209

    Article  CAS  Google Scholar 

  12. Guo Y, Kakimoto K, Ohsato H (2004) Appl Phys Lett 85:4121

    Article  CAS  Google Scholar 

  13. Saito Y, Takao H (2006) Ferroelectrics 338:17

    Article  CAS  Google Scholar 

  14. Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF (2006) J Appl Phys 100:104108

    Article  Google Scholar 

  15. Yang ZP, Chang YF, Wei LL (2007) Appl Phys Lett 90:042911

    Article  Google Scholar 

  16. Lin D, Kwok KW, Chan HLW (2007) J Appl Phys 102:034102

    Article  Google Scholar 

  17. Chandramani Singh K, Chongtham Jiten, Radhapiyari Laishram, Thakur OP, Bhattacharya DK (2010) J Alloy Compd 496:717

    Article  Google Scholar 

  18. Tennery VJ, Hang KW (1968) J Appl Phys 39:4749

    Article  CAS  Google Scholar 

  19. Koduri R, Hermosilla LS (2006) Physica Status Solidi (A) Appl Res 203:2119

    Article  CAS  Google Scholar 

  20. Ahn ZS, Schulze WA (1987) J Am Ceram Soc 70:C18

    Article  Google Scholar 

  21. Tashiro S, Ishii K (2006) J Ceram Soc Jpn 114:386

    Article  CAS  Google Scholar 

  22. Malic B, Bernard J, Holc J, Jenko D, Kosec M (2005) J Eur Ceram Soc 25:2707

    Article  CAS  Google Scholar 

  23. Ruban AV, Skriver HL, Norskov JK (1998) Phys Rev Lett 80:1240

    Article  Google Scholar 

  24. Stokes AR, Wilson AJC (1944) Proc Phys Soc 56:174

    Article  CAS  Google Scholar 

  25. Lin D, Kwok KW, Chan HLW (2007) J Phys D Appl Phys 40:6778

    Article  CAS  Google Scholar 

  26. Arlt G, Hennings D, de With G (1985) J Appl Phys 58:1619

    Article  CAS  Google Scholar 

  27. Cho JH, Lee YH, Kim BI (2010) J Ceram Proc Res 11:237

    Google Scholar 

  28. Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S (2006) Jpn J Appl Phys 45:L30

    Article  CAS  Google Scholar 

  29. Randall CA, Kim N, Kucera J-P, Cao W, Shrout TR (1988) J Am Ceram Soc 81:677

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Department of Science and Technology, India, under the Research Project No. SR/S2/CMP-0017/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandramani Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, R., Singh, K.C. & Laishram, R. Structural and piezoelectric properties of barium-modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J Mater Sci 48, 5607–5613 (2013). https://doi.org/10.1007/s10853-013-7355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7355-0

Keywords

Navigation