Skip to main content
Log in

Effect of carbon nanotubes shape on the properties of multiwall carbon nanotubes/polyethylene flexible transparent conductive films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conductive material is used in a wide range of applications and is particularly interesting. In the present work, a series of multiwall carbon nanotubes/low density polyethylene nanocomposites with different carbon nanotubes were prepared via solution casting method. The optical transparency, morphology, and resistivity of transparent conductive films have been characterized by using UV–Vis Spectrophotometer, Field emission scanning electron microscope and Multimeter, respectively. Their electrically conductive and optically transparent properties were studied and compared. The result showed that thinner and longer multiwall carbon nanotubes were more suitable for the fabrication of flexible transparent conductive nanocomposites. The sample filled with 1 wt% of T.1 (outside diameter <8 nm, length 10–30 μm) had good transparent conductive properties (volume conductivity of 3.12 × 10−3 S m−1 and optical transmittance of 62.8 % at the light wavelength of 600 nm). The high volume conductivity and optical transparency demonstrated that such kind of nanocomposite films had favorable potential in the applications from electromagnetic interference shielding to transparent electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 94, 243302 (2009)

    Article  Google Scholar 

  2. N. Kumari, S.B. Krupanidhi, K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 21, 1107 (2010)

    Google Scholar 

  3. J.J. Grodzinski, Polym. Adv. Technol. 13, 615 (2002)

    Article  Google Scholar 

  4. L.B. Hu, W. Yuan, P. Brochu, G. Gruner, Q.B. Pei, Appl. Phys. Lett. 94, 161108 (2009)

    Article  Google Scholar 

  5. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  6. R.H. Baughman, Science 297, 787 (2002)

    Article  Google Scholar 

  7. M. Baxendale, J. Mater. Sci.: Mater. Electron. 14, 657 (2003)

    Google Scholar 

  8. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    Article  Google Scholar 

  9. Y.Y. Zhang, J.P. Zhang, J.X. Gao, E.P. Wang, H. Li, J. Mater. Sci.: Mater. Electron. 24, 4170 (2013)

    Google Scholar 

  10. S.H. Park, P. Thielemann, P. Asbeck, P.R. Bandaru, Appl. Phys. Lett. 94, 243111 (2009)

    Article  Google Scholar 

  11. G. Kwon, K. Shin, B.J. Sung, Appl. Phys. Lett. 94, 093108 (2009)

    Article  Google Scholar 

  12. H. Chen, H. Muthuraman, P. Stokes, J.H. Zou, X. Liu, J.H. Wang, Q. Huo, S.I. Khondaker, L. Zhai, Nanotechnology 18, 415606 (2007)

    Article  Google Scholar 

  13. L.M. Clayton, A.K. Sikder, A. Kumar, M. Cinke, M. Meyyappan, T.G. Gerasimov, P. Harmon, Adv. Funct. Mater. 15, 101 (2005)

    Article  Google Scholar 

  14. S. Paul, D.W. Kim, Carbon 47, 2436 (2009)

    Article  Google Scholar 

  15. H.S. Ki, J.H. Yeum, S.J. Choe, J.H. Kim, I.W. Cheong, Compos. Sci. Technol. 69, 645 (2009)

    Article  Google Scholar 

  16. J.J. Hernánde, M.C. García-Gutiérrez, A. Nogales, D.R. Rueda, M. Kwiatkowska, A. Szymczyk, Compos. Sci. Technol. 69, 1867 (2009)

    Article  Google Scholar 

  17. C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St Clair. Chem. Phys. Lett. 364, 303 (2002)

    Article  Google Scholar 

  18. A.G. Nasibulin, A. Ollikainen, A.S. Anisimov, D.P. Brown, P.V. Pikhitsa, S. Holopainen, Chem. Eng. J. 136, 409 (2008)

    Article  Google Scholar 

  19. L.L. Yang, M. Li, Y.Q. Zhang, K.H. Yi, J.Y. Ma, Y.K. Liu, J. Mater. Sci.: Mater. Electron. 25, 1047 (2014)

    Google Scholar 

  20. M. Xu, T. Zhang, B. Gu, J.L. Wu, Q. Chen, Macromolecules 39, 3540 (2006)

    Article  Google Scholar 

  21. I. O’Connor, S. De, J.N. Coleman, Y.K. Gun’ko, Carbon 47, 1983 (2009)

    Article  Google Scholar 

  22. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269 (2003)

    Article  Google Scholar 

  23. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, Nano Lett. 3, 1379 (2003)

    Article  Google Scholar 

  24. N. Hu, Z. Masuda, C. Yan, G. Yamamoto, H. Fukunaga, T. Hashida, Nanotechnology 19, 215701 (2008)

    Article  Google Scholar 

  25. S.H. Yao, Z.M. Dang, M.J. Jiang, H.P. Xu, J.B. Bai, Appl. Phys. Lett. 91, 212901 (2007)

    Article  Google Scholar 

  26. J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, J.K. Kim, Adv. Funct. Mater. 17, 3207 (2007)

    Article  Google Scholar 

  27. H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater. 17, 153 (2005)

    Article  Google Scholar 

  28. M. Fu, Y. Yu, J.J. Xie, L.P. Wang, M.Y. Fan, S.L. Jiang, Y.K. Zeng, Appl. Phys. Lett. 94, 012904 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61378076), the Project of Henan Province Science and Technology (142102210137, 142300410282), the Program of Zhengzhou Science and Technology Bureau (121PPTGG359-3, 121PYFZX178, 20130679, 20130685), Foundation of Henan Educational Committee (13B430985, 13B140986). The authors also wish to thank the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, Z., Li, H. et al. Effect of carbon nanotubes shape on the properties of multiwall carbon nanotubes/polyethylene flexible transparent conductive films. J Mater Sci: Mater Electron 25, 2692–2696 (2014). https://doi.org/10.1007/s10854-014-1930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1930-2

Keywords

Navigation