Skip to main content
Log in

Direct formation of AuNPs thin film using thermal evaporated zinc as sacrificial template in hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work describes the properties of gold nanoparticles (AuNPs) embedded in polymethylsilsesquioxane (PMSSQ) as an organic dielectric layer. AuNPs were grown on this dielectric layer via the sacrificial hydrothermal process using ZnO seeded template prepared by thermal evaporation. Template prepared by using the thermal evaporation method has advantages in terms of ease of fabrication and cost compared to previous work, which the template was prepared by using sputtering method. The effect of annealing temperature on the ZnO seeded template was investigated. The effect of template on structural and electrical properties of the grown AuNPs was studied by field-emission scanning electron microscope, X-ray diffraction and semiconductor characterization system. Metal–insulator-semiconductor device with embedded AuNPs was proven to exhibit memory effect. Optimum memory properties of AuNPs embedded in PMSSQ was obtained for AuNPs grown on the Zn seeds template annealed at 350 °C with the lowest threshold voltage at 3.7 V in current–voltage characteristics, and could store 49 electrons per Au nanoparticle. This indicated that uniform AuNPs in combination with the size and area density contributed to excellent memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    Article  Google Scholar 

  2. S. Su, X. Zuo, D. Pan, H. Pei, L. Wang, C. Fan, W. Huang, Nanoscale 5, 2589 (2013)

    Article  Google Scholar 

  3. D. Prime, S. Paul, P.W. Josephs-Franks, Philos. Trans. R. Soc. A 367, 4215–4225 (2009)

    Article  Google Scholar 

  4. T.W. Kim, Y. Yang, F. Li, W.L. Kwan, NPG Asia Mater. 4, e18 (2012)

    Article  Google Scholar 

  5. J.-S. Lee, Gold. Bull. 43, 189 (2010)

    Article  Google Scholar 

  6. B. Park, K. Cho, H. Kim, S. Kim, Semicond. Sci. Technol. 21, 975 (2006)

    Google Scholar 

  7. A. Das, S. Das, A.K. Raychaudhuri, B Mater. Sci 31, 277 (2008)

    Article  Google Scholar 

  8. W.L. Leong, N. Mathews, S.G. Mhaisalkar, T.P. Chen, P.S. Lee, Appl. Phys. Lett. 93, 222908 (2008)

    Google Scholar 

  9. W.K. Lee, H.Y. Wong, K.C. Aw, Microelectron. Eng. 88, 2837 (2011)

    Article  Google Scholar 

  10. V. Shakila, K. Pandian, J. Solid State Electrochem. 11, 296 (2007)

    Article  Google Scholar 

  11. F. Zhang, M.P. Srinivasan, J. Colloid Interface Sci. 319, 450 (2008)

    Article  Google Scholar 

  12. B. Flavel, M. Nussio, J. Quinton, J. Shapter, J. Nanopart. Res. 1, 2013 (2009)

    Article  Google Scholar 

  13. L. Goh, K. Razak, N. Ridhuan, K. Cheong, P. Ooi, K. Aw, Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  14. Y. Lin, J. Xie, H. Wang, Y. Li, C. Chavez, S. Lee, S.R. Foltyn, S.A. Crooker, A.K. Burrell, T.M. McCleskey, Q.X. Jia, Thin Solid Films 492, 101 (2005)

    Article  Google Scholar 

  15. R.K. Gupta, N. Shridhar, M. Katiyar, Mater. Sci. Semicond. Proc. 5, 11 (2002)

    Article  Google Scholar 

  16. C.V. Nguyen, K.R. Carter, C.J. Hawker, J.L. Hedrick, R.L. Jaffe, R.D. Miller, J.F. Remenar, H.W. Rhee, P.M. Rice, M.F. Toney, M. Trollsås, D.Y. Yoon, Chem. Mater. 11, 3080–3085 (1999)

    Article  Google Scholar 

  17. K.C. Aw, P.C. Ooi, K.A. Razak, W. Gao, J. Mater. Sci. Mater. El 24, 3116 (2013)

    Article  Google Scholar 

  18. J.M. Montero, J. Bisquert, G. Garcia-Belmonte, E.M. Barea, H.J. Bolink, Org. Electron. 10, 305 (2009)

    Article  Google Scholar 

  19. D.I. Son, D.H. Park, J.B. Kim, J.-W. Choi, T.W. Kim, B. Angadi, Y. Yi, W.K. Choi, J. Phys. Chem. C 115, 2341 (2010)

    Article  Google Scholar 

  20. C.-W. Tseng, Y.-T. Tao, J. Am. Chem. Soc. 131, 12441 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate technical support from School of Materials & Mineral Resources Engineering, Institute for Research in Molecular Medicine and Norlab, USM. This research was jointly supported by Research University Grant 1001/PSKBP/8630019 and Scholarship MyPhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Razak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, S.A., Razak, K.A., Goh, L.P. et al. Direct formation of AuNPs thin film using thermal evaporated zinc as sacrificial template in hydrothermal method. J Mater Sci: Mater Electron 25, 2227–2236 (2014). https://doi.org/10.1007/s10854-014-1863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1863-9

Keywords

Navigation