Skip to main content
Log in

Ag nanoparticles capped TiO2 nanowires array based capacitive memory

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glancing angle deposition technique was used to fabricate Ag nanoparticles (NPs) capped TiO2 Nanowire (NW) array structure for capacitive memory application. Electron microscopes confirmed the sandwiched structure of Ag NPs between TiO2 thin-film (TF) and NW. The average length of the vertical TiO2 NW and diameter of Ag NPs (with density ~ 1012 cm2) were found to be ~ 350 ± 5 nm and ~ 3.2 ± 0.4 nm, respectively. An enhanced photoluminescence was observed in case of Ag NPs capped TiO2 NWs due to the presence of high carriers as compared to bare TiO2 NW. The capacitance (C)–voltage (V) hysteresis was measured for both Ag NPs capped TiO2 NW and bare TiO2 NW at different sweeping voltage (± 3– ± 10 V) at 1 MHz frequency. A high capacitive memory window of 7.12 V was obtained for Ag NP capped TiO2 NW at ± 10 V with an excellent endurance upto 1000 cycle. Significantly lesser charge loss of 23% was obtained after a span of 104 s with a hole and electron loss of 10.6% and 17.8% respectively. The program and erase process in the device was explained with the help of a band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Carlos, J. Deuermeier, R. Branquinho, C. Gaspar, R. Martins, A. Kiazadeh, E. Fortunato, J. Mater. Chem. C 9, 3911–3918 (2021). https://doi.org/10.1039/D0TC05368F

    Article  CAS  Google Scholar 

  2. T. Cai, Y. Liu, L. Wang, S. Zhang, J. Ma, W. Dong, Y. Zeng, J. Yuan, C. Liu, S. Luo, ACS Appl. Mater. Interfaces 10, 25350 (2018). https://doi.org/10.1021/acsami.8b06076

    Article  CAS  Google Scholar 

  3. B. Shougaijam, S.S. Singh, J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06561-7

    Article  Google Scholar 

  4. L. Tang, F. Duan, M. Chen, RSC Adv. 6, 65012 (2016). https://doi.org/10.1039/C6RA12442A

    Article  CAS  Google Scholar 

  5. T. Tachikawa, H.Y. Hwang, Y. Hikita, Appl. Phys. Lett. 111, 091602 (2017). https://doi.org/10.1063/1.4991691

    Article  CAS  Google Scholar 

  6. P. Deb, J.C. Dhar, J. Alloys Compd. 868, 159095 (2021). https://doi.org/10.1016/j.jallcom.2021.159095

    Article  CAS  Google Scholar 

  7. J.C. Dhar, A. Mondal, N.K. Singh, P. Chinnamuthu, IEEE Trans. Nanotechnol. 12, 948 (2013). https://doi.org/10.1109/TNANO.2013.2277600

    Article  CAS  Google Scholar 

  8. Y. Gui, W. Li, X. He, Z. Ding, C. Tang, L. Xu, Appl. Surf. Sci. 507, 145163 (2020). https://doi.org/10.1016/j.apsusc.2019.145163

    Article  CAS  Google Scholar 

  9. Q. Gao, M. Wang, C. Gao, M. Ge, J. Mater. Sci. 56, 351–363 (2020). https://doi.org/10.1007/s10853-020-05245-7

    Article  CAS  Google Scholar 

  10. I. Salaoru, Q. Li, A. Khiat, T. Prodromakis, Nanoscale Res. Lett. 9, 1–7 (2014). https://doi.org/10.1186/1556-276X-9-552

    Article  CAS  Google Scholar 

  11. D. Biswas, S. Mondal, A. Rakshit, Mater. Sci. Semicond. Process. 63, 1–5 (2017). https://doi.org/10.1016/j.mssp.2017.01.015

    Article  CAS  Google Scholar 

  12. A. Ganguly, A. Mondal, J.C. Dhar, N.K. Singh, S. Choudhury, Phys. E 54, 326 (2013). https://doi.org/10.1016/j.physe.2013.07.019

    Article  CAS  Google Scholar 

  13. A. Mondal, A. Ganguly, A. Das, B. Choudhuri, R.K. Yadav, Plasmonics 10, 667 (2015). https://doi.org/10.1007/s11468-014-9852-7

    Article  CAS  Google Scholar 

  14. M. Yun, D.W. Mueller, M. Hossain, V. Misra, S. Gangopadhyay, IEEE Electron Device Lett. 30, 1362 (2009). https://doi.org/10.1109/LED.2009.2033618

    Article  CAS  Google Scholar 

  15. M. Yadav, R.S.R. Velampati, R. Sharma, IEEE Trans. Semicond. Manuf. 31, 356 (2018). https://doi.org/10.1109/TSM.2018.2841661

    Article  Google Scholar 

  16. P. Deb, J.C. Dhar, J. Electron. Mater. 47, 6078–6085 (2018). https://doi.org/10.1007/s11664-018-6503-3

    Article  CAS  Google Scholar 

  17. G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 16, 49–57 (2016). https://doi.org/10.1109/TNANO.2016.2626795

    Article  Google Scholar 

  18. A.S. Alqarni, R. Hussin, S.N. Alamri, S.K. Ghoshal, Results Phy. 17, 103102 (2020)

    Article  Google Scholar 

  19. S. Panigrahy, J.C. Dhar, Semicond. Sci. Technol. 35, 055035 (2020). https://doi.org/10.1088/1361-6641/ab7b0b

    Article  CAS  Google Scholar 

  20. M.B. Sarkar, A. Mondal, B. Choudhuri, J. Alloys Compd. 654, 529 (2016). https://doi.org/10.1016/j.jallcom.2015.09.129

    Article  CAS  Google Scholar 

  21. J. Wang, L. Wu, K. Chen, L. Yu, X. Wang, J. Song, X. Huang, J. Appl. Phys. 101, 014325 (2007). https://doi.org/10.1063/1.2409280

    Article  CAS  Google Scholar 

  22. M. Soni, A. Soni, S.K. Sharma, Org. Electron. 51, 48 (2017). https://doi.org/10.1016/j.orgel.2017.09.011

    Article  CAS  Google Scholar 

  23. Z. Hou, Z. Wu, H. Yin, ECS J. Solid State Sci. Technol. 7, N91 (2018). https://doi.org/10.1149/2.0261806jss

    Article  CAS  Google Scholar 

  24. R. Khosla, E.G. Rolseth, P. Kumar, S.S. Vadakupudhupalayam, S.K. Sharma, J. Schulze, IEEE Trans. Device Mater. Reliab. 17, 80 (2017). https://doi.org/10.1109/TDMR.2017.2659760

    Article  CAS  Google Scholar 

  25. R. Bar, R. Aluguri, S. Manna, A. Ghosh, P.V. Satyam, S.K. Ray, Appl. Phys. Lett. 107, 093102 (2015). https://doi.org/10.1063/1.4929828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Chandra Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Deb, P. & Dhar, J.C. Ag nanoparticles capped TiO2 nanowires array based capacitive memory. J Mater Sci: Mater Electron 32, 21611–21619 (2021). https://doi.org/10.1007/s10854-021-06671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06671-2

Navigation