Skip to main content

Advertisement

Log in

Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanopowders with nominal compositions of Co4Sb11.5Te0.5 and In0.5Co4Sb11.5Te0.5 were prepared via hydrothermal synthesis at 180 °C for 48 h, then heat treated and finally hot pressed at 625 °C and 80 MPa for 1 h in vacuum to form bulk samples. The phase compositions of the samples were determined by X-ray diffraction. Hall Effect measurement of the samples was carried out at room temperature. The fracture surface of the samples was observed by field emission scanning electron microscopy. The electrical conductivity and the Seebeck coefficient of the samples were measured from room temperature to around 748 K. The In-filled and Te-doped CoSb3 sample with longer time annealing before hot pressing had much better electrical transport properties with the highest power factor of 38.4 μWcm−1 K−2 around 573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.C. Sales, Thermoelectric materials—smaller is cooler. Science 295, 1248–1249 (2002)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. M.S. Dresselhaus, G. Chen, Z.F. Ren, G. Dresselhaus, A. Henry, J.P. Fleurial, New composite thermoelectric materials for energy harvesting applications. JOM 61, 86–90 (2009)

    Article  CAS  Google Scholar 

  4. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)

    Book  Google Scholar 

  5. A.X. Zhang, L. Wang, X.G. He, K.F. Cai, Preparation and thermoelectric properties of Co1−xNixSb3. Rare. Met. Mater. Eng. 36, 395–397 (2007)

    Google Scholar 

  6. Z. Qin, Y. Du, K.F. Cai, Thermoelectric properties of SnxCo4Sb12 prepared by solvothermal synthesis and hot pressing. Rare. Met. Mater. Eng. 40, 231–233 (2011)

    Google Scholar 

  7. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, Enhanced thermoelectric properties in CoSb3−xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102, 103717 (2007)

    Article  Google Scholar 

  8. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, C. Uher, Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376–7383 (1997)

    Article  CAS  Google Scholar 

  9. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, C. Uher, Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864–1868 (2001)

    Article  CAS  Google Scholar 

  10. B.C. Sales, B.C. Chakoumakos, D. Mandrus, Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475–2481 (2000)

    Article  CAS  Google Scholar 

  11. R.C. Mallik, J.Y. Jung, V.D. Das, S.C. Ur, I.H. Kim, Thermoelectric properties of SnzCo8Sb24 skutterudites. Solid State Commun. 141, 233–237 (2007)

    Article  CAS  Google Scholar 

  12. G.S. Nolas, J. Yang, H. Takizawa, Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210–5212 (2004)

    Article  CAS  Google Scholar 

  13. T. He, J.Z. Chen, H.D. Rosenfeld, M.A. Subramanian, Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759–762 (2006)

    Article  CAS  Google Scholar 

  14. L. Wang, K.F. Cai, Y.Y. Wang, H. Li, H.F. Wang, Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting. Appl. Phys. A Mater. Sci. Process. 97, 841–845 (2009)

    Article  CAS  Google Scholar 

  15. A. Sesselmann, T. Dasgupta, K. Kelm, E. Mueller, S. Perlt, S. Zastrow, Transport properties and microstructure of indium-added cobalt-antimony-based skutterudites. J. Mater. Res. 26, 1820–1826 (2011)

    Article  CAS  Google Scholar 

  16. A. Harnwunggmoung, K. Kurosaki, A. Kosuga, M. Ishimaru, T. Plirdpring, R. Yimnirun, J. Jutimoosik, S. Rujirawat, Y. Ohishi, H. Muta, S. Yamanaka, Enhancement of thermoelectric properties of CoSb3-based skutterudites by double filling of Tl and In. J. Appl. Phys. 112, 043509 (2012)

    Article  Google Scholar 

  17. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101–3182103 (2008)

    Article  Google Scholar 

  18. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, X.F. Tang, Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler. J. Am. Chem. Soc. 131, 3713–3720 (2009)

    Article  CAS  Google Scholar 

  19. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-Filled Skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Article  CAS  Google Scholar 

  20. J.Y. Jung, S.C. Ur, I.H. Kim, Thermoelectric properties of InzCo4Sb12−yTey skutterudites. Mater. Chem. Phys. 108, 431–434 (2008)

    Article  CAS  Google Scholar 

  21. K.F. Cai, Q. Lei, L.C. Zhang, A new synthesis route to antimonides and their properties on thermoelectrics, in: 23rd international conference on thermoelectrics (Adlaide, Australia, 2004)

    Google Scholar 

  22. Y. Du, K.F. Cai, S. Chen, Z. Qin, S.Z. Shen, Investigation on indium-filled skutterudite materials prepared by combining hydrothermal synthesis and hot pressing. J. Electron. Mater. 40, 1215–1220 (2011)

    Article  CAS  Google Scholar 

  23. H.H. Saber, M.S. El-Genk, Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manage. 48, 1383–1400 (2007)

    Article  CAS  Google Scholar 

  24. L. Deng, H.A. Ma, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, N. Dong, S.Z. Zheng, X. Jia, Enhanced thermoelectric properties in Co4Sb12-xTex alloys prepared by HPHT. Mater. Lett. 63, 2139–2141 (2009)

    Article  CAS  Google Scholar 

  25. R.C. Mallik, J.Y. Jung, S.C. Ur, I.H. Kim, Thermoelectric properties of InzCo4Sb12 skutterudites. Met. Mater. Int. 14, 223–228 (2008)

    Article  CAS  Google Scholar 

  26. H. Li, X. Tang, Q. Zhang, C. Uher, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114–102116 (2009)

    Article  Google Scholar 

  27. P.S. Kireev, Semiconductor Physics (Mir Publishers, Moscow, 1978)

    Google Scholar 

  28. H.J. Goldsmid, Electronic Refrigeration (Pion Limited, London, 1985)

    Google Scholar 

  29. S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, X.B. Zhao, Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. J. Alloy. Compd. 499, 215–220 (2010)

    Article  CAS  Google Scholar 

  30. J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, C. Uher, Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B 67, 165207 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (50872095, 51271133), Doctoral Fund of Ministry of Education of China, and the foundation of the State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Cai, K.F., Chen, S. et al. Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite. J Mater Sci: Mater Electron 24, 4142–4147 (2013). https://doi.org/10.1007/s10854-013-1373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1373-1

Keywords

Navigation