Skip to main content
Log in

Optoelectronics behaviour of ZnO nanorods for UV detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study ZnO nanorods have been synthesized by a chemical precipitation method. The room temperature UV–Vis absorption spectra of the ZnO nanorods indicated two absorption peaks in the UV region, one in the near UV region and the other attributed to the band gap of ZnO. The Photoluminescence spectra of ZnO nanorods show two emission bands, one ultraviolet emission band at 378 nm and the other in the defect related yellow emission band near 550 nm. The stimulated yellow luminescence of ZnO nanorods were affected by the synthesis time and annealing temperature. The same ZnO nanorods were deposited onto the ITO substrate to form a UV photoconductive detector. The ratio of the UV photogenerated current to dark current was as high as nine times under 3 V bias. Hence, these nanorods can be promising materials in the use of UV radiation detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Xu, Z. Wang, Nano Res. 4, 1013 (2011)

    Article  CAS  Google Scholar 

  2. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 445, 317 (2003)

    Article  CAS  Google Scholar 

  3. Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, The. J. Phys. Chem. C 113, 3430 (2009)

    Article  CAS  Google Scholar 

  4. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006)

    Article  CAS  Google Scholar 

  5. R. Könenkamp, R.C. Word, M. Godinez, Nano Lett. 5, 2005 (2005)

    Article  Google Scholar 

  6. J. Eriksson, V. Khranovskyy, F. Söderlind, P.-O. Käll, R. Yakimova, A.L. Spetz, Sens. Actuators B Chem. 137, 94 (2009)

    Article  Google Scholar 

  7. W.-T. Chiou, W.-Y. Wu, J.-M. Ting, Diam. Relat. Mater. 12, 1841 (2003)

    Article  CAS  Google Scholar 

  8. B. Xiang, P. Wang, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang, Nano Lett. 7, 323 (2006)

    Article  Google Scholar 

  9. L.L. Yang, Q.X. Zhao, M. Willander, J. Alloys Compd. 469, 623 (2009)

    Article  CAS  Google Scholar 

  10. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Phys. B Condens. Matter 403, 3713 (2008)

    Article  CAS  Google Scholar 

  11. X. Zhou, Q. Kuang, Z.-Y. Jiang, Z.-X. Xie, T. Xu, R.-B. Huang, L.-S. Zheng, J. Phys. Chem. C 111, 12091 (2007)

    Article  CAS  Google Scholar 

  12. B. Cao, W. Cai, H. Zeng, Appl. Phys. Lett. 88, 161101 (2006)

    Article  Google Scholar 

  13. Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)

    Article  CAS  Google Scholar 

  14. A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006)

    Article  Google Scholar 

  15. S. Yamauchi, Y. Goto, T. Hariu, J. Crys. Growth 260, 1 (2004)

    Article  CAS  Google Scholar 

  16. W.M. Kwok, A.B. Djurisic, Y.H. Leung, D. Li, K.H. Tam, D.L. Phillips, W.K. Chan, Appl. Phys. Lett. 89, 183112 (2006)

    Article  Google Scholar 

  17. Y.H. Leung, A.B. Djurišić, Z.T. Liu, D. Li, M.H. Xie, W.K. Chan, J. Phys. Chem. Solids 69, 353 (2008)

    Article  CAS  Google Scholar 

  18. D. Yuvaraj, R. Kaushik, K. Narasimha Rao, ACS Appl. Mater. Interfaces 2, 1019 (2010)

    Article  CAS  Google Scholar 

  19. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)

    Article  CAS  Google Scholar 

  20. C. Rauch, W. Gehlhoff, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, M. Driess, J. Appl. Phys. 107, 024311 (2010)

    Article  Google Scholar 

  21. Q. Liqiao, C. Shing, S. Sawyer, Electron Device Lett. IEEE 32, 51 (2011)

    Article  Google Scholar 

  22. D. Shao, M. Yu, H. Sun, T. Hu, J. Lian, S. Sawyer, Nanoscale 5, 3664 (2013)

    Article  CAS  Google Scholar 

  23. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, Nat Nano 7, 798 (2012)

    Article  CAS  Google Scholar 

  24. L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen, Sens. Actuators B Chem. 166–167, 12 (2012)

    Article  Google Scholar 

  25. V.L. Colvin, A.P. Alivisatos, J.G. Tobin, Phys. Rev. Lett. 66, 2786 (1991)

    Article  CAS  Google Scholar 

  26. Y. Du, M.S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin, Appl. Phys. A 76, 171 (2003)

    Article  CAS  Google Scholar 

  27. K.W. Liu, R. Chen, G.Z. Xing, T. Wu, H.D. Sun, Appl. Phys. Lett. 96, 023111 (2010)

    Article  Google Scholar 

  28. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  CAS  Google Scholar 

  29. H.S. Choi, M. Vaseem, S.G. Kim, Y.H. Im, Y.B. Hahn, J. Solid State Chem. 189, 25 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledge CSIR for research fellowships and supports extended for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, M., Kapur, P. & Singla, M.L. Optoelectronics behaviour of ZnO nanorods for UV detection. J Mater Sci: Mater Electron 24, 3940–3945 (2013). https://doi.org/10.1007/s10854-013-1343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1343-7

Keywords

Navigation