Skip to main content
Log in

High responsivity of ultraviolet sensor-based rutile-phased TiO2 nanorod arrays using different bias voltage

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Highly oriented rutile titanium dioxide (TiO2) nanorod arrays were grown on fluorine-doped tin oxide (FTO) substrate using a hydrothermal method. X-ray diffraction, Raman spectra, field emission-scanning electron microscopy, and ultraviolet-visible spectroscopy were conducted to determine the structural, morphological, and optical properties of the sample. The synthesized TiO2 nanorod arrays exhibited tetragonal rutile structure. The photocurrent analysis was done by using photoelectrochemical method where different bias voltage (0 V to 0.9 V) was applied. The photocurrent value shows acceptable difference with increasing bias voltage. The TiO2 nanorod array (TNAs) UV sensors show high responsivity as indicated by the fast rise and decay time of the photocurrent of less than 1 s with every bias voltage applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buzby, S., et al.: Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition. J Vac Sci Technol B Microelectron Nanom Struct. 24(3), 1210–1214 (2006)

    Article  CAS  Google Scholar 

  2. Xiong, J., et al.: Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Org. Electron. 17, 253–261 (2015)

    Article  CAS  Google Scholar 

  3. Okuya, M., et al.: Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV sensors. Solid State Ionics. 172(1–4 SPEC. ISS.), 527–531 (2004)

    Article  CAS  Google Scholar 

  4. Perillo, P.M., Rodríguez, D.F.: Sensors and actuators B: chemical short communication A room temperature chloroform sensor using TiO 2 nanotubes. Sensors Actuators B Chem. 193, 263–266 (2014)

    Article  CAS  Google Scholar 

  5. Burda, C., Chen, X., Narayanan, R., El-sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)

    Article  CAS  Google Scholar 

  6. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  7. Lidija, M.T., Bojan, M.A., Paula, J.M., Olivera, B., Fernando, R.: Precursor particle size as the key parameter for isothermal tuning of morphology from nanofibers to nanotubes in the Na2-xHxTinO2n+1 system through hydrothermal alkali treatment of rutile mineral sand. Am. Chem. Soc. 9(5), 2152–2158 (2009)

  8. Zhou,W., Liu, X., Cui, J., Liu, D., Li, J., Jiang, H., Wang, J., Liu, H.: Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acidhydrothermal method and their optical properties. CrystEngComm, 13(14), 4557–4565 (2011)

  9. Selman, A.M., Hassan, Z.: Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate. Sensors Actuators A Phys. 221, 15–21 (Jan. 2015)

  10. Zu, X., et al.: Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays. Synth. Met. 200, 58–65 (2015)

  11. Ahmad, M.K., et al.: Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J. Mater. Sci. Mater. Electron. 27(8), 7920–7926 (2016)

  12. J. Kim et al.: Ga-doped ZnO transparent electrodes with TiO2 blocking layer/nanoparticles for dye-sensitized solar cells, pp. 2–5, 2012

  13. Zhou, J.J., Wang, S.Y., Gunasekaran, S.: Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 74(7), 50–56 (2009)

    Article  Google Scholar 

  14. Kuriechen, S.K., Murugesan, S., Raj, S.P.: Mineralization of azo dye using combined photo-Fenton and photocatalytic processes under visible light. J. Catal. 2013, 1–6 (2013)

    Article  Google Scholar 

  15. Yang, G., Jiang, Z., Shi, H., Xiao, T., Yan, Z.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20(25), 5301–5309 (2010)

    Article  CAS  Google Scholar 

  16. Tian, J., et al.: Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small. 9(22), 3864–3872 (2013)

    Article  CAS  Google Scholar 

  17. Cao, C., Hu, C., Wang, X., Wang, S., Tian, Y., Zhang, H.: UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors Actuators B Chem. 156(1), 114–119 (Aug. 2011)

    Article  CAS  Google Scholar 

  18. R. van de Krol and Michael Grätzel, Principles of Photoelectrochemical Cells, vol. 102. Springer US, 2012

  19. Bard, A.J.: Design of semiconductor photoelectrochemical systems for solar energy conversion. J. Phys. Chem. C. 86(May), 172–177 (1982)

    Article  CAS  Google Scholar 

  20. Li, H., Zheng, L., Shu, S., Cheng, H., Yang, Y.: Morphology control of anodic TiO2 nanomaterials via cold work pretreatment of Ti foils. J. Electrochem. Soc. 158(10), 346–351 (2011)

    Article  Google Scholar 

  21. Tian, Y., Hu, C., He, X., Cao, C., Huang, G., Zhang, K.: Chemical titania nanotube arrays for light sensor and UV photometer. Sensors Actuators B Chem. 144, 203–207 (2010)

    Article  CAS  Google Scholar 

  22. Selman, A.M., Hassan, Z.: Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector. Opt Mater (Amst). 44, 37–47 (Jun. 2015)

    Article  CAS  Google Scholar 

  23. Xie, Y., et al.: A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8(188), 1–6 (2013)

    Google Scholar 

  24. Cao, C., Hu, C., Shen, W., Wang, S., Song, S., Wang, M.: Improving photoelectrochemical performance by building Fe2O3 heterostructure on TiO2 nanorod arrays. Mater. Res. Bull. 70(3), 155–162 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Ministry of Education (MOE) Malaysia (Vot 1213), Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), and Universiti Tun Hussein Onn Malaysia (UTHM) using Vot STG U347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ahmad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, S.M., Ahmad, M.K., Nafarizal, N. et al. High responsivity of ultraviolet sensor-based rutile-phased TiO2 nanorod arrays using different bias voltage. J Aust Ceram Soc 56, 461–468 (2020). https://doi.org/10.1007/s41779-019-00350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00350-6

Keywords

Navigation