Skip to main content
Log in

Nanocrystalline ITO-Sn2S3 transparent thin films for photoconductive sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline indium tin oxide (ITO) film containing 5 wt% Sn was prepared on glass substrate by the spray pyrolysis technique at a substrate temperature of 500 °C. In order to enhance the photosensitivity of ITO, thiourea (CS(NH2)2 was added to the precursor to obtain the [S]/[In] proportion of 0.1, 0.2, 0.4 and 0.6. The X-ray diffraction patterns showed that beside the bixbyite structure of ITO, the characteristic peaks corresponding to Sn2S3 appeared in XRD profiles recorded for the films with [S]/[In] = 0.1 and 0.2. In addition, sulfur additive caused a considerable decline in crystallinity quality. The optical properties of the films were studied using transmittance measurements in the wavelength range 300–1,000 nm. As a result, ITO and ITO-Sn2S3 thin films were prepared with resistivity of 3.06–3.7 × 10−4 Ω cm and a transmittance of 88–91 % at the wavelength of 550 nm. Moreover, the electrical resistances of ITO and ITO-Sn2S3 films as a function of time were measured in darkness and under illumination of light in the visible range. The photoresistance results revealed that the ITO-Sn2S3 film with [S]/[In] = 0.2 was efficiently sensitive to visible light for photoconductive sensor applications, besides being high conductive and transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  2. T. Nagatoma, Y. Martua, O. Omao, Thin Solid Films 192, 17 (1990)

    Article  Google Scholar 

  3. K.M. Reddy, J. Hays, S. Kundu, L.K. Dua, P.K. Biswas, C. Wang, V. Shutthanandan, M.H. Engelhard, X. Mathew, A. Punnoose, J. Mater. Sci.: Mater. Electron. 18, 1197 (2007)

    Article  CAS  Google Scholar 

  4. S.Y. Kim, H.W. Jang, J.-L. Lee, Appl. Phys. Lett. 82, 61 (2003)

    Article  CAS  Google Scholar 

  5. K. Nihsio, T. Sei, T. Tsuchiya, J. Mater. Sci. 31, 1761 (1996)

    Article  Google Scholar 

  6. D.M. Mattox, Thin Solid Films 204, 25 (1991)

    Article  CAS  Google Scholar 

  7. J.I. Pankove, Display devices, topics in applied physics, vol. 40 (Springer-Verlag, Berlin, 1980)

    Book  Google Scholar 

  8. S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamuva, J. Vac. Sci. Technol. 18, 1399 (1990)

    Google Scholar 

  9. S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F. Kwong, Appl. Phys. A 68, 447 (1999)

    Article  CAS  Google Scholar 

  10. L. Li, J.S. Yu, S.L. Lou, W.Z. Li, Y.D. Jiang, W. Li, J. Mater. Sci.: Mater. Electron. 19, 1214 (2008)

    Article  CAS  Google Scholar 

  11. A. Arazna, G. Koziol, K. Janeczek, K. Futera, W. Steplewski, J. Mater. Sci.: Mater. Electron. 24, 267 (2013)

    Article  CAS  Google Scholar 

  12. R.A. Berrigan, S.J.C. Irvine, A. Stafford, D.J. Cole-Hamilton, D. Ellis, J. Mater. Sci.: Mater. Electron. 9, 267 (1998)

    Article  CAS  Google Scholar 

  13. M. Balestrieri, D. Pysch, J.-P. Becker, M. Hermle, W. Warta, S.W. Glunz, Sol. Energy Mater. Sol. Cells 95, 2390 (2011)

    Article  CAS  Google Scholar 

  14. A. Subrahmanyam, N. Balasubrahmanian, Semicond. Sci. Technol. 7, 324 (1992)

    Article  CAS  Google Scholar 

  15. G.D. Sharma, D. Saxena, M.S. Roy, J. Mater. Sci.: Mater. Electron. 10, 539 (1999)

    Article  CAS  Google Scholar 

  16. B.-S. Chiou, J.-H. Tsai, J. Mater. Sci.: Mater. Electron. 10, 491 (1999)

    Article  CAS  Google Scholar 

  17. S.T. Heinilehto, J.H. Lappalainen, H.M. Jantunen, V. Lantto, J. Electroceram. 27, 7 (2011)

    Article  CAS  Google Scholar 

  18. J.-H. Lee, J. Electroceram. 17, 1103 (2006)

    Article  CAS  Google Scholar 

  19. T. Saraidarov, R. Reisfeld, A. Sashchiuk, E. Lifshitz, J. Sol-Gel Sci. Technol. 34, 137 (2005)

    Article  CAS  Google Scholar 

  20. A. Tanusevski, D. Poelman, Sol. Energy Mater. Sol. Cells 80, 297 (2003)

    Article  CAS  Google Scholar 

  21. U. Alpen, J. Fenner, E. Gmelin, Mater. Res. Bull. 10, 175 (1975)

    Article  Google Scholar 

  22. M. Khadraoui, N. Benramdane, C. Mathieu, A. Bouzidi, R. Miloua, Z. Kebbab, K. Sahraoui, R. Desfeux, Solid State Commun. 150, 297 (2010)

    Article  CAS  Google Scholar 

  23. Y.-N. Kim, S.-M. Jeong, M.-S. Jeon, H.-G. Shin, J.-K. Song, H.-S. Lee, J. Electroceram. 17, 955 (2006)

    Article  CAS  Google Scholar 

  24. J.-H. Kim, J.-H. Lee, Y.-W. Heo, J–.J. Kim, J.-O. Park, J. Electroceram. 23, 169 (2009)

    Article  CAS  Google Scholar 

  25. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belendi, M. Oz, J. Mater. Sci.: Mater. Electron. 24, 467 (2013)

    Article  CAS  Google Scholar 

  26. F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Mater. Sci.: Mater. Electron. 12, 57 (2001)

    Article  CAS  Google Scholar 

  27. A. Prodi-Schwab, T. Luthge, R. Jahn, B. Herbig, P. Lobmann, J. Sol-Gel Sci. Technol. 47, 68 (2008)

    Article  CAS  Google Scholar 

  28. S.-M. Kim, Y.-S. Rim, M.-J. Keum, K.-H. Kim, J. Electroceram. 23, 341 (2009)

    Article  CAS  Google Scholar 

  29. P. Thilakan, S. Kalainathan, J. Kumar, P. Ramssamy, J. Electron. Mater. 24, 719 (1995)

    Article  CAS  Google Scholar 

  30. E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, J. Sol-Gel Sci. Technol. 50, 337 (2009)

    Article  CAS  Google Scholar 

  31. N. Asakuma, T. Fukui, M. Toki, H. Imai, J. Sol-Gel Sci. Technol. 27, 91 (2003)

    Article  CAS  Google Scholar 

  32. M. Rami, E. Benamar, C. Messaoudi, D. Sayah, A. Ennaoui, Eur. J. Solid State Inorg. Chem. 35, 211 (1998)

    Article  CAS  Google Scholar 

  33. M. Ait Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Mater. Res. Bull. 44, 1458 (2009)

    Article  Google Scholar 

  34. O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402 (2010)

    Article  Google Scholar 

  35. K–.K. Kim, H. Kim, S.-N. Lee, S. Cho, Electron. Mater. Lett. 7, 145 (2011)

    Article  CAS  Google Scholar 

  36. I. Chambouleyron, S.D. Ventura, E.G. Birgin, J.M. Martinez, J. Appl. Phys. 92, 3093 (2002)

    Article  CAS  Google Scholar 

  37. T.S. Moss, Optical properties of semiconductor (Butter Worths Scientific Publication Ltd, London, 1959)

    Google Scholar 

  38. A. Porch, D.V. Morgan, R. Perks, M. Jones, P.P. Edwards, J. Appl. Phys. 95, 9 (2004)

    Article  Google Scholar 

  39. V.S. Reddy, K. Das, A. Dhar, S.K. Ray, Semiconduc. Sci. Technol. 21, 1747 (2006)

    Article  CAS  Google Scholar 

  40. H.C. Lee, O.O. Park, Vacuum 80, 880 (2006)

    Article  CAS  Google Scholar 

  41. M.-J. Keum, J.-G. Han, J. Korean Phys. Soc. 53, 1580 (2008)

    Article  CAS  Google Scholar 

  42. E. Hichou, A. Kachouane, J.L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, Thin Solid Films 458, 263 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimizadeh Abrishami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motevalizadeh, L., Khorshidifar, M., Ebrahimizadeh Abrishami, M. et al. Nanocrystalline ITO-Sn2S3 transparent thin films for photoconductive sensor applications. J Mater Sci: Mater Electron 24, 3694–3700 (2013). https://doi.org/10.1007/s10854-013-1305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1305-0

Keywords

Navigation