Skip to main content
Log in

Efficient growth of aligned SnO2 nanorod arrays on hematite (α-Fe2O3) nanotube arrays for photoelectrochemical and photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2 nanorod arrays were fabricated on hematiete nanotube arrays by an efficient hydrothermal method. The hematiete nanotube arrays were prepared by anodization of pure iron foil in an ethylene glycol solution. SnO2 nanorod arrays grew from the bottom of hematite nanotubes and were firmly combined with the iron foil substrate. The morphology and microstructure of SnO2 nanorod arrays are investigated by field-emission scanning electron microscopy, grazing incidence X-ray diffraction and UV–Vis absorbance spectra. The sample presented typical SnO2 nanorod arrays (reacted for 2 h) generally of 400 nm in length and 50 nm in side width showed the best photocatalytic activity and photoelectrochemical response under the UV illumination. It should be attributed to the effective electron–hole separation and the excellent electron transfer pathway along the 1D SnO2 nanorod arrays and hematiete nanotube arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Y. Wang, M.H. Wu, Z. Jiao, J.Y. Lee, Nanotechnology 20, 345704 (2009)

    Article  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan, Adv Mater 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  3. J. Weber, R. Singhai, S. Zekri, A. Kumar, Int Mater Rev 53, 235–255 (2008)

    Article  CAS  Google Scholar 

  4. L.V. Thong, L.T.N. Loan, N.V. Hieu, Sens Actuators B Chem 150, 112–119 (2010)

    Article  Google Scholar 

  5. J.P. Liu, Y.Y. Li, X.T. Huang, R.M. Ding, Y.Y. Hu, J. Jiang, L. Liao, J Mater Chem 19, 1859–1864 (2009)

    Article  CAS  Google Scholar 

  6. R.E. Presley, C.L. Munsee, C.H. Park, D. Hong, J.F. Wager, D.A. Keszler, J Phys D Appl Phys 37, 2810–2813 (2004)

    Article  CAS  Google Scholar 

  7. D.F. Zhang, L.D. Sun, C.J. Jia, Z.G. Yan, L.P. You, C.H. Yan, J Am Chem Soc 127, 13492–13493 (2005)

    Article  CAS  Google Scholar 

  8. M.T. Niu, Y. Cheng, Y.S. Wang, L.F. Cui, F. Bao, L.H. Zhou, Cryst Growth Des 8, 1727–1729 (2008)

    Article  CAS  Google Scholar 

  9. E.M. El-Maghraby, Y. Nakamura, S. Rengakuji, Catal Commun 9, 2357–2360 (2008)

    Article  CAS  Google Scholar 

  10. C.H. Wang, C.L. Shao, X.T. Zhang, Y.C. Liu, Inorg Chem 48, 7261–7268 (2009)

    Article  CAS  Google Scholar 

  11. C.W. Cheng, B. Liu, H.Y. Yang, W.W. Zhou, L. Sun, R. Chen, S.F. Yu, J.X. Zhang, H. Gong, H.D. Sun, H.J. Fan, ACSNANO 3, 3069–3076 (2009)

    CAS  Google Scholar 

  12. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Inorg Chem (2012). doi:10.1021/ic300794j

    Google Scholar 

  13. H.J. Wang, F.Q. Sun, Y. Zhang, L.S. Li, H.Y. Chen, Q.S. Wu, J.C. Yu, J Mater Chem 20, 5641–5645 (2010)

    Article  CAS  Google Scholar 

  14. Z.H. Zhang, M.F. Hossain, T. Takahashi, J Appl Catal B Environ 95, 423–429 (2010)

    Article  CAS  Google Scholar 

  15. D.R. Chu, J.H. Mo, Q. Peng, Y.P. Zhang, Y.G. Wei, Z.B. Zhuang, Y.D. Li, ChemCatChem 3, 371–377 (2011)

    Article  CAS  Google Scholar 

  16. Y.L. Wang, M. Guo, M. Zhang, X.D. Wang, CrystEngComm 12, 4024–4027 (2010)

    Article  CAS  Google Scholar 

  17. J.P. Liu, Y.Y. Li, X.T. Huang, Z.H. Zhu, Nanoscale Res Lett 5, 1177–1181 (2010)

    Article  CAS  Google Scholar 

  18. J. Kang, Q. Kuang, Z.X. Xie, L.S. Zheng, J Phys Chem C 115, 7874–7879 (2011)

    Article  CAS  Google Scholar 

  19. S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, J Chem Mater 21, 3048–3055 (2009)

    Article  CAS  Google Scholar 

  20. M. Niu, F. Huang, L.F. Cui, P. Huang, Y.L. Yu, Y.S. Wang, ACSNANO 4, 681–688 (2010)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.50771075, No.51171133), the Program for New Century Excellent Talents in University (No. NCET-07-0650) and the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China (No.2011B090400334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, G., Ni, H., Chen, R. et al. Efficient growth of aligned SnO2 nanorod arrays on hematite (α-Fe2O3) nanotube arrays for photoelectrochemical and photocatalytic applications. J Mater Sci: Mater Electron 24, 3324–3329 (2013). https://doi.org/10.1007/s10854-013-1250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1250-y

Keywords

Navigation