Skip to main content
Log in

High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Impedance spectroscopy measurements were carried out on lead based, 0.25 (PbZr0.52Ti0.48O3) + 0.25 (PbFe0.50Ta0.50O3) + 0.25 (PbFe0.67W0.33O3) + 0.25 (PbFe0.50Nb0.50O3) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Kania, A. Majda, S. Miga, A. Slodczyk, Phys. B 400, 42–46 (2007)

    Article  CAS  Google Scholar 

  2. N.V. Prasad, M.C. Sekhar, G.S. Kumar, Ferroelectrics 366, 55–66 (2008)

    Article  CAS  Google Scholar 

  3. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22 (1998)

    Article  CAS  Google Scholar 

  4. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989)

    Article  CAS  Google Scholar 

  5. R. Martínez, A. Kumar, D.A. Sanchez, R. Palai, R.S. Katiyar, J. Appl. Phys. 108, 084105 (2010)

    Article  Google Scholar 

  6. R. Martinez, R. Palai, H. Huhtinen, J. Liu, J.F. Scott, R.S. Katiyar, Phys. Rev. B 82, 134104 (2010)

    Article  Google Scholar 

  7. R. Martinez, R. Palai, R.S. Katiyar, Mater. Res. Soc. Symp. Proc. 1034, K10-48–K10-55 (2008)

    Google Scholar 

  8. M. Correa, A. Kumar, R.S. Katiyar, C. Rinaldi, Appl. Phys. Lett. 93, 192907 (2008)

    Article  Google Scholar 

  9. A. Falqui et al., J. Phys. Chem. B 109, 22967 (2005)

    Article  CAS  Google Scholar 

  10. A. Kumar, I. Rivera, R.S. Katiyar, J.F. Scott, Appl. Phys. Lett. 92, 132913 (2008)

    Article  Google Scholar 

  11. A. Kumar, N.M. Murari, R.S. Katiyar, J.F. Scott, Appl. Phys. Lett. 9, 262907 (2007)

    Article  Google Scholar 

  12. S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, H. Rundlof, Solid State Sci. 9, 440e450 (2007)

    Article  Google Scholar 

  13. A. Kumar, G.L. Sharma, R.S. Katiyar, R. Pirc, R. Blinc, J.F. Scott, J. Phys. Condens. Matter 21, 382204 (2009)

    Article  Google Scholar 

  14. B.H. Lee, N.K. Kim, J.J. Kim, S.H. Cho, J. Korean Phys. Soc. 32, S978–S980 (1998)

    CAS  Google Scholar 

  15. V.S. Puli, R.V. Martínez, A. Kumar, J.F. Scott, R.S. Katiyar, Mater. Res. Bull. 46, 2527–2530 (2011)

    Article  CAS  Google Scholar 

  16. K.K. Patanakar, S.A. Patil, K.V. Sivakumar, R.P. Mahajan, Y.D. Kolekar, M.B. Kothale, Mater. Chem. Phys. 65, 97 (2001)

    Article  Google Scholar 

  17. S. Sen, S.K. Mishra, S.S. Palit, S.K. Das, A. Tarafdar, J. Alloys Compd. 453, 395 (2008)

    Article  CAS  Google Scholar 

  18. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)

    Article  CAS  Google Scholar 

  19. C. Ang, J.R. Jurado, Z. Yu, M.T. Colomer, J.R. Frade, J.L. Baptista, Phys. Rev. B 57, 11858–11861 (1998)

    Article  CAS  Google Scholar 

  20. O. Bohnke, J. Emery, J.L. Fourquet, Solid State Ion. 158, 119–132 (2003)

    Article  CAS  Google Scholar 

  21. R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)

    Article  Google Scholar 

  22. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  23. S. Sarkar, P.K. Jana, B.K. Chaudhuri, Appl. Phys. Lett. 92, 022905 (2008)

    Article  Google Scholar 

  24. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51, 1473–1479 (2006)

    Article  CAS  Google Scholar 

  25. W. Di, A. Li, Appl. Phys. A 95(2), 517–521 (2009)

    Article  Google Scholar 

  26. F.D. Morrison, D.J. Jung, J.F. Scott, J. Appl. Phys. 101, 094112 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy (DoE-EPSCoR) under Grant No. DE-FG02-08ER46526. One of the authors (Ricardo Martinez) would like to thank to the Institute for Functional Nanomaterials (IFN) through University of Puerto Rico for support his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkata Sreenivas Puli or Ram S. Katiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, R., Puli, V.S. & Katiyar, R.S. High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior. J Mater Sci: Mater Electron 24, 2790–2795 (2013). https://doi.org/10.1007/s10854-013-1172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1172-8

Keywords

Navigation