Skip to main content
Log in

A. c. conductance of γ-irradiated discontinuous platinum films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Four films (A, B, C and D) of discontinuous platinum films (D(Pt)Fs) whose mass thicknesses (d m ) are 10, 20, 30 and 40 Å, respectively were deposited onto Corning 7,059 glass substrates at ambient temperature via the thermal evaporation technique. Each film was γ-irradiated by different doses, namely, 100, 200, 300, 500 and 700 Gy; this was done by using 137Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. For each dose, the d. c. and total resistance of the Pt films were measured; in that way the a.c. conductance G ac of the films could be determined. It was found that: (1) G ac increases as the dose, d m and the angular frequency ω of the voltage imposed on the film increases (2) the γ-irradiation has modified the shape of islands such that they are elongated parallel to the substrate surface and thus the inter-island spacings have decreased. This elongation has been confirmed via micrographs taken by the atomic force microscope. To account qualitatively for the results of G ac it was assumed that, the a.c. conductance of D(Pt)Fs is due to the hopping of electrons through the sites which exist on the substrate surface between two adjacent islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.J. Coutts, Electrical conduction in thin metal films (Elsevier, Amsterdam, 1974), pp. 90–91

    Google Scholar 

  2. E. Broitman, R. Zimmerman, Thin Solid Films 317, 440 (1998)

    Article  CAS  Google Scholar 

  3. T.J. Coutts, Active and passive thin film devices (Academic Press, New York, 1978), pp. 297–298

    Google Scholar 

  4. A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, J. Mater. Sci. Mater. Electron 17, 71 (2006)

    Article  CAS  Google Scholar 

  5. A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, J. Mater. Sci. Mater. Electron 17, 489 (2006)

    Article  CAS  Google Scholar 

  6. D. Filenko, T. Gotszalk, Z. Kazantseva, O. Rabinovych, I. Koshets, Yu. Shirshov, V. Kalchenko, I.W. Rangelowb, Sens. Actuat B 111–112, 264 (2005)

    Article  Google Scholar 

  7. I.K. El Zawawi, N. Rabie, K. Sedeek, A. Adam, M.A. Mahdy, J. Mater. Sci. Mater. Electron. 22, 1195 (2011)

    Article  Google Scholar 

  8. V.V. Emtsev, V.V. Emtsev Jr, G.A. Oganesyan, J. Mater. Sci. Mater. Electron. 18, 701 (2007)

    Article  CAS  Google Scholar 

  9. T.K. Maity, S.L. Sharma, Bull. Mater. Sci. 31(6), 841 (2008)

    Article  CAS  Google Scholar 

  10. J.E. Morris, Thin Solid Films 36, 29 (1976)

    Article  CAS  Google Scholar 

  11. F. Wu, J. E. Morris, in Proceedings of IEEE Polytronics Conference on 2002, pp 145–149

  12. J.R. Harkay, A.D. Crowell, J. Appl. Phys. 47(10), 4504 (1976)

    Article  CAS  Google Scholar 

  13. A.G. Bishay, H. Hunter, W. Fikry, H.F. Ragaie, J. Mater. Sci. Mater. Electron 14, 115 (2003)

    Article  CAS  Google Scholar 

  14. S.M. Deshpandet, A.D. Crowell, J. Vac. Sci. Technol. 9(1), 97 (1972)

    Article  Google Scholar 

  15. K. Rajanna, S. Mohan, Thin Solid Films 172, 45 (1989)

    Article  CAS  Google Scholar 

  16. M. Pattabi, K. Mohan, J. Phys. D Appl. Phys. 31, 19 (1998)

    Article  CAS  Google Scholar 

  17. E. Hedborg, F. Winquist, H. Sundgren, I. Lundstrorm, Thin Solid Films 340, 250 (1999)

    Article  CAS  Google Scholar 

  18. T. Yamaguchi, S. Yoshida, A. Kinbara, Thin Solid Films 21, 173 (1974)

    Article  CAS  Google Scholar 

  19. A.G. Hunt, Philos. Mag. B 81(9), 875 (2001)

    CAS  Google Scholar 

  20. A.A. Hirsch, S. Bazian, Physica. 30, 258 (1964)

    Article  CAS  Google Scholar 

  21. B.W. Licznerski, Thin Solid Films 55(3), 361 (1978)

    Article  CAS  Google Scholar 

  22. J. Lowell, A.C. Rose-Innes, Adv. Phys. 29(6), 947 (1980)

    Article  CAS  Google Scholar 

  23. C.A. Neugebauer, M.B. Webb, J. Appl. Phys. 33, 74 (1962)

    Article  CAS  Google Scholar 

  24. R.M. Hill, Proc. Roy. Soc. Lond. A 309, 377 (1969)

    Article  CAS  Google Scholar 

  25. D.S. Hermann, T.N. Rhodin, J. Appl. Phys. 37, 1594 (1966)

    Article  Google Scholar 

  26. G. Rieder, Phys. Rev. B 20(5), 607 (1979)

    Article  CAS  Google Scholar 

  27. A.G. Bishay, S. El-Gamal, Nucl. Instrum. Methods Phys. Res. Sect. B 269(10), 1108 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor W. Fikry (Engineering Mathematics and Physics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt) for offering some important experimental facilities used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. El-Gamal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishay, A.G., El-Gamal, S. A. c. conductance of γ-irradiated discontinuous platinum films. J Mater Sci: Mater Electron 24, 2619–2623 (2013). https://doi.org/10.1007/s10854-013-1142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1142-1

Keywords

Navigation