Skip to main content
Log in

Effect of particles size on the AC electrical behavior of iron/polystyrene composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The AC electrical characteristics of polystyrene/Iron composites filled with iron particles of average sizes: 5, 40, 110 and 250 μm, have been investigated. The AC electrical properties were studied in frequency range (50 kHz–1 MHz), and temperature range (30–110 °C) using the impedance method. The AC-conductivity and dielectric constants were determined from the measured impedance data. It was found that the applied frequency, temperature, and iron particles size affect the electrical and dielectric properties of the composites. The AC-electrical conductivity is increasing with temperature. The dielectric constant and the dielectric loss of the composites increase with decreasing the iron particles size. The universal power-law of the electrical conductivity gives exponent with 0 < m < 1 characterizing hopping conduction. The small values of the activation energy indicate that the composite of smallest iron particle size, electrons can tunnel or hop more easily from the valence band to conduction energy band due to the reduction of interparticles separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Delmonte, Metal-Polymer Composites (V.N. Reinhold, New York, 1990)

    Google Scholar 

  2. R. Strumpler, R.J. Glatz, Conductive polymer composite. J. Electroceram. 3(L4), 329–346 (1993)

    Google Scholar 

  3. H.A. Zios, Y.P. Mamunya, J. Appl. Polym. Sci. 88(13), 3013–3020 (2003)

    Article  Google Scholar 

  4. Y.P. Mamunya, H. Zois, L. Apekis, E.V. Lebedev, Power Technol. 140, 49–55 (2004)

    Article  CAS  Google Scholar 

  5. I.K. Bishay, S.L. Abd-El-Messieh, S.H. Mansour, Mater. Desi. 32, 62–68 (2011)

    Article  CAS  Google Scholar 

  6. L.C. Costa, M. Valente, M.A. Sá, F. Henry, Polym. Bull. 57, 881–887 (2006)

    Article  CAS  Google Scholar 

  7. S. Shekhar, V. Prasad, S.V. Subramanyam, Mater. Sci. Eng. B 133, 108–112 (2006)

    Article  CAS  Google Scholar 

  8. Y. Baziard, S. Breton, A. Gourdenne, Eur. Polym. J. 24(6), 521–526 (1988)

    Article  CAS  Google Scholar 

  9. G.C. Psarras, J. Polym. Sci. Part B Polym. Phys. 45, 2535–2545 (2007)

    Article  CAS  Google Scholar 

  10. R.A. Crossman, Present and future. Polym. Eng. Sci. 25(8), 507–513 (2004)

    Article  Google Scholar 

  11. H.A. Zios, Y.P. Mamunya, Macromol. Symp. 194, 351–359 (2003)

    Article  Google Scholar 

  12. B.P. Sahoo, K. Naskar, D.K. Tripathy, J. Mater. Sci. 47(5), 2421–2433 (2012)

    Article  CAS  Google Scholar 

  13. Q. Xue, Eur. Polym. J. 40, 323–327 (2004)

    Article  CAS  Google Scholar 

  14. M. Taşdemir, H.Ö. Gülsoy, Polym. Plast. Technol. Eng. 45(11), 1207–1211 (2006)

    Article  Google Scholar 

  15. M.S. Ahmad, M.K. Abdelazeez, A. Zihlif, E. Martuscelli, G. Ragosta, E. Scafora, J. Mater. Sci. 25(7), 3083–3088 (1990)

    Article  CAS  Google Scholar 

  16. S. Saqan, A.M. Zihlif, Inter. J. Polym. Mat. 56, 411–419 (2007)

    Article  CAS  Google Scholar 

  17. C. Patron, M. Hashemi, J. Mater. Sci. 27, 2279 (1992)

    Article  Google Scholar 

  18. S. Sbeih, A. Zihlif, J. Phys. D Appl. Phys. 42, 165408 (2009)

    Article  Google Scholar 

  19. S.A. Saq’an, A.S. Ayesh, A.M. Zihlif, E. Martuscelli, G. Ragosta, Polym. Test. 23, 739–745 (2004)

    Google Scholar 

  20. A.K. Jonscher, Universal Relaxation Law (Dielectric Press, London, 1992)

    Google Scholar 

  21. Z. Ellimat, A. Zihlif, R. Rogosta, J. Phys. D Appl. Phys. 41, 165408 (2008)

    Article  Google Scholar 

  22. J. Kaur, V. Gupta, R.K. Kotnala, K.C. Verma, Indian J. Pure Appl. Phys. 50, 57–63 (2012)

    CAS  Google Scholar 

  23. V.I. Roldughin, V.V. Vysotskii, Progress Org. Coatings 39, 81–100 (2000)

    Article  CAS  Google Scholar 

  24. H. Gülsoy, M. Taşdemir, Int. J. Polym. Mater. 55(8), 619–626 (2006)

    Article  Google Scholar 

  25. E. Abd El-Wahabb, Acta Phys. Pol. A 108, 985–996 (2005)

    Google Scholar 

  26. H.S. Jasem, W.A. Hussain, J. Basrah Res. (Sci.) 38(1), A 60–71 (2012)

    Google Scholar 

  27. H.P. Xu, Y.H. Wu, D.D. Yang, J.R. Wang, H.Q. Xie, Rev. Adv. Mater. Sci. 27, 173–183 (2011)

    Google Scholar 

  28. I.K. Bishay, S.L. Abd-El-Messieh, S.H. Mansour, Mater. Des. 32, 62–68 (2011)

    Article  CAS  Google Scholar 

  29. S. Banerjee, K.A. Cook-Chennault, J. Eng. Mater. Technol. 133/041016-1-6 (2011)

    Google Scholar 

  30. J.C. Dyre, T.B. Shoder, Mod. Phys. 72(3), 873–892 (2000)

    Article  Google Scholar 

  31. G.C. Psarras, Compos. Part A 37,1545–1553 (2006)

    Google Scholar 

  32. G.M. Tsangaris, G.C. Psarras, A.J. Kontopoulos, J. Non Cryst. Solids 1164, 131 (1991)

    Google Scholar 

  33. G.C. Psarras, E. Manolakaki, G.M.,Tsangaris, Appl. Sci. Manuf. 33(3), 375–384 (2002)

  34. H. Bottger, U.V. Bryskin, Hopping Conduction in Solids (A. Berlag, Berlin, 1985)

    Google Scholar 

Download references

Acknowledgments

The authors thank the Institute of Marbo Company in Italy for providing the iron powders with different particles sizes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zihlif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Aqrabawi, F.S., Zihlif, A.M., Elimat, Z.M. et al. Effect of particles size on the AC electrical behavior of iron/polystyrene composites. J Mater Sci: Mater Electron 24, 1690–1695 (2013). https://doi.org/10.1007/s10854-012-0997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0997-x

Keywords

Navigation