Skip to main content
Log in

Influence of TiO2 nanoparticles on thermal property, wettability and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 composite solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of TiO2 nanoparticles on thermal property, wettability, and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 (x = 0, 0.05, 0.1, and 0.6) lead-free composite solder was investigated in this study. Results show that the solidus temperatures of the TiO2-containing composite solder have no obvious change compared with TiO2-free solder. However, the liquidus temperatures of the TiO2-containing composite solders increase by 4.4 °C with an increase in amounts of TiO2 nanoparticles. The wetting angle of the composite solder decreases with the addition of TiO2 nanoparticles ranging from 0.05 to 0.1 wt%, while the spreading area increases. Based on the spherical cap model, the mathematical relation between the wetting angle and spreading area is analyzed. Scanning electron microscopy was used to observe the interfacial microstructure evolution of solder joints and to estimate the thickness of the intermetallic layer. Energy dispersive x-ray and x-ray diffractometry were used to identify the intermetallic compound (IMC) phases. Results reveal that both the thickness of IMCs and the size of Cu6Sn5 grains formed in the solder matrix decrease when TiO2 nanoparticles were added. It was also observed that some of the TiO2 nanoparticles are adsorbed on the surfaces of the scallop-like Cu6Sn5 grains. According to the adsorption theory, the surface energy of the Cu6Sn5 grains decreases with adsorption of TiO2 nanoparticles. Therefore, the diffusion of Sn and Cu atoms might be retarded, resulting in suppressing the growth of the IMCs layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.Y. Li, X.D. Bi, Q. Chen, X.Q. Shi, J. Electron. Mater. 40, 165 (2011)

    Article  CAS  Google Scholar 

  2. G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, W. Dai, J.D. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010)

    Article  CAS  Google Scholar 

  3. X.P. Zhang, L.M. Yin, C.B. Yu, J. Mater. Sci.: Mater. Electron. 19, 393 (2008)

    Article  CAS  Google Scholar 

  4. L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Des. 31, 4831 (2010)

    Article  CAS  Google Scholar 

  5. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci.: Mater. Electron. 23, 1108 (2012)

    Article  CAS  Google Scholar 

  6. G.Y. Li, B.L. Chen, J.N. Tey, IEEE Trans. Electron. Packag. Manuf. 27, 77 (2004)

    Article  CAS  Google Scholar 

  7. Z. Moser, P. Fima, K. Bukat, J. Sitek, J. Pstrus, W. Gasior, M. Koscielski, T. Gancarz, Solder. Surf. Mt. Tech. 23, 22 (2011)

    Article  CAS  Google Scholar 

  8. K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska, A. Mlozniak, Solder. Surf. Mt. Technol. 23, 150 (2011)

    Article  CAS  Google Scholar 

  9. B.L. Chen, G.Y. Li, IEEE Trans. Compon. Packag. Technol. 28, 534 (2005)

    Article  CAS  Google Scholar 

  10. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Materater, J. Mater. Sci.: Mater. Electron. 22, 315 (2011)

    Article  CAS  Google Scholar 

  11. X.L. Zhong, M. Gupta, Adv. Eng. Mater. 7, 1049 (2005)

    Article  Google Scholar 

  12. L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng., A 545, 194 (2012)

    Article  CAS  Google Scholar 

  13. L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci.: Mater. Electron. 23, 681 (2012)

    Article  CAS  Google Scholar 

  14. S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32, 4720 (2011)

    Article  CAS  Google Scholar 

  15. L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990 (2010)

    Article  CAS  Google Scholar 

  16. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, Mater. Sci. Eng., A 441, 135 (2006)

    Article  Google Scholar 

  17. J. Shen, Y.C. Chan, J. Alloys Compd. 477, 552 (2009)

    Article  CAS  Google Scholar 

  18. M. Amagai, Microelectron. Reliab. 48, 1 (2008)

    Article  CAS  Google Scholar 

  19. D.C. Lin, G.X. Wang, T.S. Srivastna, M. Al-Hajri, M. Patraroli, Matter. Lett. 53, 333 (2002)

    Article  CAS  Google Scholar 

  20. D.C. Lin, S. Liu, T.M. Guo, G.X. Wang, T.S. Srivastna, M. Patraroli, Mater. Sci. Eng., A 360, 285 (2003)

    Article  Google Scholar 

  21. L. Zang, Z. Yuan, H. Xu, B. Xu, Appl. Surf. Sci. 257, 4877 (2011)

    Article  CAS  Google Scholar 

  22. X.R. Zhang, Z.F. Yuan, H.X. Zhao, L.K. Zang, J.Q. Li, Chinese Sci. Bull. 55, 797 (2010)

    Article  CAS  Google Scholar 

  23. L.C. Tsao, J. Alloys Compd. 509, 2326 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this work from the Planned Science and Technology Project of Guangdong Province under the Project 2012B020313004 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Pan, Y.C. & Li, G.Y. Influence of TiO2 nanoparticles on thermal property, wettability and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 composite solder. J Mater Sci: Mater Electron 24, 1587–1594 (2013). https://doi.org/10.1007/s10854-012-0980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0980-6

Keywords

Navigation