Skip to main content
Log in

Butterfly-shaped multiferroic BiFeO3@BaTiO3 core–shell nanotubes: the interesting structural, multiferroic, and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly pure butterfly-shaped BiFeO3@BaTiO3 nanotubes have been synthesized through a sol–gel method. An obvious ferromagnetic behavior was obtained at room temperature, with a large coercive field (5,403 Oe) and high Mr/Ms value (0.52). The dielectric permittivity of BiFeO3@BaTiO3 nanotubes was found to be 1919, which is much higher than that of pure BFO nanostructure. The dielectric loss of BiFeO3@BaTiO3 nanotubes is low in the frequency range from 10 Hz to 1 MHz. The maximum magnetoelectric coefficient of BiFeO3@BaTiO3 nanotube is 0.272 μV/cm Oe. Moreover, the BiFeO3@BaTiO3 nanotubes have exhibited a better ferroelectric property with a large band gap of 3.2 eV which demonstrates the core–shell nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.K.H. Saije, Phase transition in ferroelastic and co-elastic crystals: an introduction for mineralogists, material scientists and physicists (Cambridge University Press, Cambridge, 1990), p. 147

    Google Scholar 

  2. W. Eerenstein, N. Mathur, J. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  3. J. Miao, X. Zhang, Q. Zhan, Y. Jiang, K.H. Chew, Appl. Phys. Lett. 99, 062905 (2011)

    Article  Google Scholar 

  4. J. Miao, B.P. Zhang, K.H. Chew, Y. Wang, Appl. Phys. Lett. 92, 062902 (2008)

    Article  Google Scholar 

  5. S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, M. Sakata, Solid State Ion. 172, 557 (2004)

    Article  CAS  Google Scholar 

  6. M. Zeng, J.G. Wan, Y. Wang, J. Appl. Phys. 95, 8069 (2004)

    Article  CAS  Google Scholar 

  7. J. Nie, G. Xu, Y. Yang, C. Cheng, Mater. Chem. Phys. 115, 400 (2009)

    Article  CAS  Google Scholar 

  8. H.M. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M.P. Cruz, L.Q. Chen, U. Dahmen, R. Ramesh, Nano Lett. 6, 1401 (2006)

    Article  CAS  Google Scholar 

  9. K. Raidongia, A. Nag, A. Sundaresan, C.N.R. Rao, Appl. Phys. Lett. 97, 062904 (2010)

    Article  Google Scholar 

  10. M. Liu, X. Li, H. Imrane, Y.J. Chen, T. Goodrich, Z.H. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun, Appl. Phys. Lett. 90, 152501 (2007)

    Article  Google Scholar 

  11. M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791 (2007)

    Article  CAS  Google Scholar 

  12. Y. Zhao, J. Miao, X. Zhang, Y. Chen, X.G. Xu, Y. Jiang, J. Mater. Sci. Mater. Electron. 23, 180 (2012)

    Article  CAS  Google Scholar 

  13. H. Singh, A. Kumara, K.L. Yadav, Mater. Sci. Eng. B 176, 540 (2011)

    Article  CAS  Google Scholar 

  14. J. Miao, K.H. Chew, Y. Jiang, Appl. Phys. Lett. 99, 232910 (2011)

    Article  Google Scholar 

  15. I. Sosnowska, R. Przenioslo, P. Fischer, V.A. Murashov, J. Magn. Magn. Mater. 160, 384 (1996)

    Article  CAS  Google Scholar 

  16. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbough, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  CAS  Google Scholar 

  17. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H.J. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)

    Article  Google Scholar 

  18. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  Google Scholar 

  19. J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, J. Appl. Phys. 96, 468 (2004)

    Article  CAS  Google Scholar 

  20. T.H. Wang, Y. Ding, C.S. Tu, Y.D. Yao, K.T. Wu, T.C. Lin, H.H. Yu, C.S. Ku, H.Y. Lee, J. Appl. Phys. 109, 07D907 (2011)

    Article  Google Scholar 

  21. I.H. Ismailzade, I.M. Ismailov, A.I. Alekberov, F.M. Salaev, Phys. Status Solidi A 68, K81 (1980)

    Article  Google Scholar 

  22. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  23. A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 12432 (2010)

    Article  CAS  Google Scholar 

  24. P. Pandit, S. Satapathy, P.K. Gupta, V.G. Sathe, J. Appl. Phys. 106, 114105 (2009)

    Article  Google Scholar 

  25. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  Google Scholar 

  26. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  27. M.M. Kumar, V.R. Palkar, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  Google Scholar 

  28. T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  29. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.C. Chaudhari, V.L. Mathe, S.A. Patil, Pramana J. Phys. 58, 1115 (2002)

    Article  CAS  Google Scholar 

  30. G.V. Duonga, R. Groessingera, J. Magn. Magn. Mater. 316, 642 (2007)

    Google Scholar 

  31. S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 794 (2004)

    Article  Google Scholar 

  32. M.A. Butler, J. Appl. Phys. 48, 1914 (1977)

    Article  CAS  Google Scholar 

  33. T. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Miao, J., Meng, X.B. et al. Butterfly-shaped multiferroic BiFeO3@BaTiO3 core–shell nanotubes: the interesting structural, multiferroic, and optical properties. J Mater Sci: Mater Electron 24, 1439–1445 (2013). https://doi.org/10.1007/s10854-012-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0947-7

Keywords

Navigation