Skip to main content
Log in

Influence of penetration time on the structure and conductivity of Sm-modified BaTiO3 powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study BaTiO3 powders were prepared by the sol–gel method. And the gaseous penetration technique was adopted to improve the conductivity of the BaTiO3 powders. The resistivity of BaTiO3 powders decreased from 4.3 × 109 to 1.75 × 103 Ω m as the penetration time increased from 1 to 5 h and then increased to 3.43 × 103 Ω m with further increase of penetration time to 6 h. Intricate reactions related to Sm took place during the penetration process, and the phases of Ba4Ti2O27, BaSm2Ti4O12, and BaSm2O4 were detected. The gases penetration led to low Po2 condition, the substitution of Sm3+ for Ti4+ and the Ti-rich state after penetration. The results indicated that increasing of the penetrative time help to the increase of the Sm content, the growth and fusion of the grains and the decrease of the resistivity. The penetration time is one of the critical factors which influence the effect of penetration and the best penetration time is 5 h. In addition, the authors also suggest that the Sm-modified BaTiO3 powders will be favorable to get low cost conductive powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Izumi, K. Izumi, N. Kuroiwa, A. Senjuh, A. Fujimoto, M. Adachi, T. Yamamoto, J. Alloys Compd. 480, 123 (2009)

    Article  CAS  Google Scholar 

  2. H.B. Dai, H.X. Li, F.H. Wang, Appl. Surf. Sci. 253, 2474 (2006)

    Article  CAS  Google Scholar 

  3. K. Vanmeensel, S.G. Huang, A. Laptev, S.A. Salehi, A.K. Swarnakar, O. Van der Biest, J. Vleugels, J. Mater. Sci. 43, 6435 (2008)

    Article  CAS  Google Scholar 

  4. W.J. Tseng, C.N. Chen, J. Mater. Sci. 41, 1213 (2006)

    Article  CAS  Google Scholar 

  5. G. Maizza, S. Grasso, Y. Sakka, J. Mater. Sci. 44, 1219 (2009)

    Article  CAS  Google Scholar 

  6. S. Wang, H. Su, H.Y. Yuan, L.Y. Chen, J. Mater. Sci. Mater. Electron. 22, 1213 (2011)

    Article  CAS  Google Scholar 

  7. H.R. Xu, L. Gao, Mater. Lett. 58, 1582 (2004)

    Article  CAS  Google Scholar 

  8. S.D. Vacche, F. Oliveira, Y. Leterrier, V. Michaud, D. Damjanovic, J.A.E. Manson, J. Mater. Sci. 47, 4763 (2012)

    Article  Google Scholar 

  9. Q. Huang, L. Gao, Y.Q. Liu, J. Sun, J. Mater. Chem. 15, 1995 (2005)

    Article  CAS  Google Scholar 

  10. Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, M. Konno, J. Eur. Ceram. Soc. 28, 117 (2008)

    Article  CAS  Google Scholar 

  11. L. Simon-Seveyrat, A. Hajjaji, Y. Emiane, B. Guiffard, D. Guyomar, Ceram. Int. 33, 35 (2007)

    Article  CAS  Google Scholar 

  12. J. Petzelt, T. Ostapchuk, A. Pashkin, I. Rychetský, J. Eur. Ceram. Soc. 23, 2627 (2003)

    Article  CAS  Google Scholar 

  13. M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, D. Vladikova, J. Eur. Ceram. Soc. 24, 1221 (2004)

    Article  CAS  Google Scholar 

  14. S.K. Jo, Y.H. Han, K.H. Choi, J. Mater. Sci. 42, 6696 (2007)

    Article  CAS  Google Scholar 

  15. S.S. Ryu, D.H. Yoon, J. Mater. Sci. 42, 7093 (2007)

    Article  CAS  Google Scholar 

  16. D. Feng, K. Kazumi, I. Hiroaki, W. Satoshi, H. Hajime, K. Makoto, CrystEngComm 12, 3441 (2010)

    Article  Google Scholar 

  17. A.E. Souza, R.A. Silva, G.T.A. Santos, M.L. Moreira, D.P. Volanti, S.R. Teixeira, E. Longo, Chem. Phys. Lett. 488, 54 (2010)

    Article  CAS  Google Scholar 

  18. Y. Song, Y. Shen, H.Y. Liu, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. 22, 8063 (2012)

    Article  CAS  Google Scholar 

  19. N. Masó, H. Beltrán, E. Cordoncillo, A. Arenas Flores, P. Escribano, D.C. Sinclair, A.R. West, J. Mater. Chem. 16, 3114 (2006)

    Article  Google Scholar 

  20. G.M. Ren, S.L. Yuan, H.G. Guan, X. Xiao, G.Q. Yu, J.H. Miao, Y.Q. Wang, S.Y. Yin, Mater. Lett. 61, 767 (2007)

    Article  CAS  Google Scholar 

  21. J. Jeong, Y.H. Han, Phys. Chem. Chem. Phys. 5, 2264 (2003)

    Article  CAS  Google Scholar 

  22. J.R. Sambrano, E. Orhan, M.F.C. Gurgel, A.B. Campos, M.S. Goes, C.O. Paiva-Santos, J.A. Varela, E. Longo, Chem. Phy. Lett. 402, 491 (2005)

    Article  CAS  Google Scholar 

  23. S. Tangjuank, T. Tunkasiri, Appl. Phys. Lett. 90, 072908 (2007)

    Article  Google Scholar 

  24. W. Preis, W. Sitte, Solid State Ionics 177, 3093 (2006)

    Article  CAS  Google Scholar 

  25. A. Jana, T.K. Kundu, Mater. Lett. 61, 1544 (2007)

    Article  CAS  Google Scholar 

  26. X. Guo, C. Pithan, C. Ohly, C.L. Jia, J. Dornseiffer, F.H. Haegel, R. Waser, Appl. Phys. Lett. 86, 082110 (2005)

    Article  Google Scholar 

  27. M.D. Glinchuk, L.P. Bykov, S.M. Kornienko, V.V. Laguta, A.M. Slipenyuk, A.G. Bilous, O.I. V’yunovand, O.Z. Yanchevskii, J. Mater. Chem. 10, 941 (2000)

    Article  CAS  Google Scholar 

  28. H. Erkalfa, B. Yuksel, T.O. Ozkan, J. Eur. Ceram. Soc. 26, 2909 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, D., Hao, S. & Qiang, L. Influence of penetration time on the structure and conductivity of Sm-modified BaTiO3 powders. J Mater Sci: Mater Electron 24, 1208–1212 (2013). https://doi.org/10.1007/s10854-012-0907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0907-2

Keywords

Navigation