Skip to main content
Log in

Prerequisite for maximizing thermal conductivity of epoxy laminate using filler

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron nitride-filled epoxy laminate with excellent thermal conductivity was prepared. Its thermal conductivity was enhanced through sliane surface treatment prior to mixing the epoxy. The lamination enhanced thermal conductivity of the boron nitride filled epoxy by 20 % by reducing the voids in the structure. The heat conduction mechanism in laminated board, i.e. BN, glass fabric and epoxy, is not the same as a simpler BN-epoxy system, even though thermal conductivity of epoxy laminate is mainly affected by filler size and contents, as in the case of BN-epoxy composite. This study provides evidence of the importance of temperature and pressure after surface engineering of boron nitride for fabricating high thermal conductivity laminates, establishing the prerequisites for maximizing thermal conductivity of BN-epoxy laminate. The infrared thermogram showed that the BN-laminate can effectively lower the temperature of a surface mounted LED by 12.5 °C compared to the traditional FR4. According to the IESNA LM 80 lifetime testing method, this reduction in LED temperature is equivalent to increasing the LED’s lifetime by 21,000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Fishcher, R. Schmid, Polymere werkstoff, band I (Verlag, New York, 1986)

    Google Scholar 

  2. C.I. Nicholls, H.M.J. Rosenberg, Phys. C: Solid State Phys. 17, 1165 (1984)

    Article  CAS  Google Scholar 

  3. K.W. Garret, H.M.J. Rosenberg, Phys. D: Appl. Phys. 7, 1247 (1974)

    Article  Google Scholar 

  4. H.J. Ott, Plast. Rubber Process. Appl. 1, 9 (1981)

    CAS  Google Scholar 

  5. P. Procter, J. Solc, IEEE Trans. Comp. Hybrids Manu. Tech. 14, 708 (1991)

    Article  CAS  Google Scholar 

  6. H. He, R. Fu, Y. Han, Y. Shen, X. Song, J. Mater. Sci. 42, 6749 (2007)

    Article  CAS  Google Scholar 

  7. D.M. Bigg, Polym. Compos. 7, 125 (1986)

    Article  CAS  Google Scholar 

  8. D.P.H. Hasselman, L.D.J. Johnson, Compos. Mater. 21, 508 (1987)

    Article  Google Scholar 

  9. G.I. Batchelor, R.W.O. Brien, Proc. R. Soc. Lond. Ser. A 355, 313 (1977)

    Article  Google Scholar 

  10. Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 17, 653 (2010)

    Article  CAS  Google Scholar 

  11. A.A. Solomo, J. Fourcade, S.G. Lee, S.K. Kuchibhotla, S. Revankar, R. Latta, P.L. Holman, J.K. McCoy, in Proceedings of the 2004 international Meeting on LWR Fuel Performance, Orlando, 2004, p. 1028

  12. M. Hussain, Y. Oku, A. Nakahira, K. Niihara, Mater. Lett. 26, 177 (1996)

    Article  CAS  Google Scholar 

  13. P. Bujard, G. Kü hlein, S. Ino, T. Shiobara, IEEE Trans. Compon. Packag. Manuf. Technol. A 17, 527 (1994)

    Google Scholar 

  14. Y. Xu, D.D.L. Chung, C. Mroz, Compos. A 32, 1749 (2001)

    Article  Google Scholar 

  15. W. Kim, J.W. Bae, I.D. Choi, Y.S. Kim, Polym. Eng. Sci. 39, 756 (1999)

    Article  CAS  Google Scholar 

  16. W. Bae, W. Kim, S.W. Park, C.S. Ha, J.K.J. Lee, Appl. Polym. Sci. 83, 2617 (2002)

    Article  CAS  Google Scholar 

  17. M.T. Huang, H.J. Ishida, Polym. Sci. Part B: Polym. Phys. 37, 2360 (1999)

    Article  CAS  Google Scholar 

  18. R.S. Pease, Acta Crystallogr. 5, 236 (1952)

    Article  Google Scholar 

  19. L. Li, D.D.L.J. Chung, Electron. Mater. 23, 557 (1994)

    Article  CAS  Google Scholar 

  20. K.C. Yung, H.M. Liem, J. Appl. Polym. Sci. 106, 3587 (2007)

    Article  CAS  Google Scholar 

  21. K.C. Yung, J. Wang, T.M. Yue, J. Compos. Mater. 42, 2615 (2008)

    Article  CAS  Google Scholar 

  22. K.C. Yung, B.L. Zhu, T.M. Yue, Z.S. Xie, J.J. Wu, Polym. Sci. Part B: Polym. Phys. 45, 1662–1674 (2006)

    Article  Google Scholar 

  23. R.L. McCullough, Compos. Sci. Technol. 22, 3 (1986)

    Article  Google Scholar 

  24. L. Ekstrand, H. Kristiansen, J. Liu, 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005, 35

  25. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987)

    Article  CAS  Google Scholar 

  26. K. Saito, S. Miyashita, J. Phys. Soc. Jpn. 71, 2485 (2002)

    Article  CAS  Google Scholar 

  27. Z. Wang, T. Iizuka, M. Kozako, Y. Ohki, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 2011, 18 (1963)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Hong Kong Innovation Technology Fund (ITF) under project number ITS/257/09FP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Yung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yung, K.C., Liem, H. & Choy, H.S. Prerequisite for maximizing thermal conductivity of epoxy laminate using filler. J Mater Sci: Mater Electron 24, 1095–1104 (2013). https://doi.org/10.1007/s10854-012-0886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0886-3

Keywords

Navigation