Skip to main content
Log in

Effect of grain-boundary behavior on the dc electric conduction in Rb-doped CaCu3Ti4O12

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca1−x Rb x Cu3Ti4O12 (x = 0, 0.03, 0.05, 0.07 and 0.09) ceramics have been synthesized by the sol–gel method. The results of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis indicate that a small amount of CuO and the grain boundary layers with Cu-rich and Ti-poor compositions are formed in the Rb-doped ceramic samples. The curves of dc electrical current density versus electric field strength have been collected at different temperatures, and the electrical conduction behaviors at grain boundary have been studied in detail based on the grain-boundary Schottky model. The results show that the formation of the Cu-rich and Ti-poor grain boundaries greatly affects the properties of grain-boundary Schottky potential barrier. For example, the barrier width increases with the increase on doping concentration x, and the barrier height (ФB) is also greatly enhanced as the concentration of dopants is very small, but as x is larger than 0.05, the ФB values reduce. These results should be ascribed to the second phases at grain boundary and the change of electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  CAS  Google Scholar 

  2. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  CAS  Google Scholar 

  3. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  CAS  Google Scholar 

  4. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

    Article  CAS  Google Scholar 

  5. T. Fang, H. Shiau, J. Am. Chem. Soc. 87, 2072 (2004)

    CAS  Google Scholar 

  6. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  CAS  Google Scholar 

  7. M. Li, Z.J. Shen, M. Nygren, A. Feteira, D.C. Sinclair, A.R. West, J. Appl. Phys. 106, 104106 (2009)

    Article  Google Scholar 

  8. M.A. Pires, C. Israel, W. Iwamoto, R.R. Urbano, O. Agüero, I. Torriani, C. Rettori, P.G. Pagliuso, L. Walmsley, Z. Le, J.L. Cohn, S.B. Oseroff, Phys. Rev. B 73, 224404 (2006)

    Article  Google Scholar 

  9. S. Chung, I. Kim, S. Kang, Nat. Mater. 3, 774 (2004)

    Article  CAS  Google Scholar 

  10. A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)

    Article  CAS  Google Scholar 

  11. Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, Appl. Phys. Lett. 88, 172902 (2006)

    Article  Google Scholar 

  12. J. Cai, Y.-H. Lin, B. Cheng, C.-W. Nan, Appl. Phys. Lett. 91, 252905 (2007)

    Article  Google Scholar 

  13. J. Yuan, Y.-H. Lin, H.F. Lu, B. Cheng, C.-W. Nan, J. Am. Chem. Soc. 94, 1966 (2011)

    CAS  Google Scholar 

  14. Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  15. B. Cheng, Y.-H. Lin, J. Yuan, J. Cai, C.-W. Nan, X. Xiao, J. Appl. Phys. 106, 034111 (2009)

    Article  Google Scholar 

  16. J. Liu, R.W. Smith, W. Mei, Chem. Mater. 19, 6020 (2007)

    Article  CAS  Google Scholar 

  17. S. Jesurani, S. Kanagesan, R. Velmurugan, T. Kalaivani, J. Mater. Sci.: Mater. Electron. 23, 668 (2012)

    Article  CAS  Google Scholar 

  18. S. Jesurani, S. Kanagesan, T. Kalaivani, K. Ashok, J. Mater. Sci.: Mater. Electron. 23, 692 (2012)

    Article  CAS  Google Scholar 

  19. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Chinese National Foundation of Natural Science (No. 51172166, 51202078) and Huazhong University of Science and Technology (No. 01-18-185011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhang, Y., Zhang, K. et al. Effect of grain-boundary behavior on the dc electric conduction in Rb-doped CaCu3Ti4O12 . J Mater Sci: Mater Electron 24, 1063–1067 (2013). https://doi.org/10.1007/s10854-012-0881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0881-8

Keywords

Navigation