Skip to main content
Log in

Small Rb+ doping in CaCu3Ti4O12-A possible approach to reduce dielectric loss

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ca1−x Rb x Cu3Ti4O12 (x=0, 0.01, 0.02 and 0.03) ceramics were synthesized by the sol-gel method. Doping Rb+ reduces dielectric loss, which reaches minimum when x=0.02. By measuring properties of electrical conduction, larger leakage current density and height of grain-boundary Schottky potential barrier (ϕB) were found in the doped samples, and ϕB became maximum when x=0.02. These results are attributed to the increase in the amount of oxygen vacancies and the formation of Cu-rich/Ti-poor grain-boundary layers, and it can be concluded that the dielectric loss in CCTO ceramic can be reduced by manipulating the composition and electrical properties of grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez A P, Subramanian M A, Gardel M, et al. Giant Dielectric Constant Response in a Copper-Titanate[J]. Solid State Communications, 2000, 115(5): 217–220

    Article  Google Scholar 

  2. Subramanian M A, Li D, Duan N, et al. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases[J]. Journal of Solid State Chemistry, 2000, 151(2): 323–325

    Article  Google Scholar 

  3. Adams T B, Sinclair D C, West A R. Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics[J]. Advanced Materials, 2002, 14(18): 1 321–1 323

    Article  Google Scholar 

  4. Li J, Subramanian M A, Rosenfeld H D, et al. Clues to the Giant Dielectric Constant of CaCu3Ti4O12 in the Defect Structure of “SrCu3Ti4O12”[J]. Chemistry of Materials, 2004, 16(25): 5 223–5 225

    Article  Google Scholar 

  5. Fang T T, Shiau H K. Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12[J]. Journal of the American Ceramic Society, 2004, 87(11): 2 072–2 079

    Article  Google Scholar 

  6. Sinclair D C, Adams T B, Morrison F D, et al. CaCu3Ti4O12: One-Step Internal Barrier Layer Capacitor[J]. Applied Physics Letters, 2002, 80(12): 2 153–2 155

    Article  Google Scholar 

  7. Zhang J L, Zheng P, Wang C L, et al. Dielectric Dispersion of CaCu3Ti4O12 Ceramics at High Temperatures[J]. Applied Physics Letters, 2005, 87(14): 142 901–142 901-3

    Article  Google Scholar 

  8. Chiodelli G, Massarotti V, Capsoni D, et al. Electric and Dielectric Properties of Pure and Doped CaCu3Ti4O12 Perovskite Materials[J]. Solid State Communications, 2004, 132(3): 241–246

    Article  Google Scholar 

  9. Liu L, Fan H, Fang P, et al. Electrical Heterogeneity in CaCu3Ti4O12 Ceramics Fabricated by Sol-Gel Method[J]. Solid State Communications, 2007, 142(10): 573–576

    Article  Google Scholar 

  10. Liu L, Fan H, Fang P, et al. Sol-Gel Derived CaCu3Ti4O12 Ceramics: Synthesis, Characterization and Electrical Properties[J]. Materials Research Bulletin, 2008, 43(7): 1 800–1 807

    Article  Google Scholar 

  11. Lee S Y, Hong Y W, Im Yoo S. Invited Paper: Dielectric Properties of CaCu3Ti4O12 Polycrystalline Ceramics[J]. Electronic Materials Letters, 2011, 7(4): 287–297

    Article  Google Scholar 

  12. Li W, Qiu S, Chen N, et al. Enhanced Dielectric Response in Mg-Doped CaCu3Ti4O12 Ceramics[J]. Journal of Materials Science & Technology, 2010, 26(8): 682–686

    Article  Google Scholar 

  13. Ni L, Chen X M. Enhanced Giant Dielectric Response in Mg-Substituted CaCu3Ti4O12 Ceramics[J]. Solid State Communications, 2009, 149(9): 379–383

    Article  Google Scholar 

  14. Li M, Cai G, Zhang D F, et al. Enhanced Dielectric Responses in Mg-Doped CaCu3Ti4O12[J]. Journal of Applied Physics, 2008, 104(7): 074 107–074 107-4

    Article  Google Scholar 

  15. Ni L, Chen X M. Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution[J]. Journal of the American Ceramic Society, 2010, 93(1): 184–189

    Article  Google Scholar 

  16. Shao S F, Zhang J L, Zheng P, et al. High Permittivity and Low Dielectric Loss in Ceramics with the Nominal Compositions of CaCu3−x La2x/3Ti4O12[J]. Applied Physics Letters, 2007, 91(4): 042 905–042 905-3

    Article  Google Scholar 

  17. Feng L, Tang X, Yan Y, et al. Decrease of Dielectric Loss in CaCu3Ti4O12 Ceramics by La Doping[J]. Physica Status Solidi A, 2006, 203(4): R22–R24

    Article  Google Scholar 

  18. Yang Z, Zhang Y, Lu Z, et al. Electrical Conduction and Dielectric Properties of the Rb-Doped CaCu3Ti4O12[J]. Journal of the American Ceramic Society, 2013, 96(3): 806–811

    Article  Google Scholar 

  19. Cheng B, Lin Y H, Yuan J, et al. Dielectric and Nonlinear Electrical Behaviors of La-Doped CaCu3Ti4O12 Ceramics[J]. Journal of Applied Physics, 2009, 106(3): 034 111–034 111-4

    Article  Google Scholar 

  20. Felix A A, Orlandi M O, Varela J A. Schottky-Type Grain Boundaries in CCTO Ceramics[J]. Solid State Communications, 2011, 151(19): 1 377–1 381

    Article  Google Scholar 

  21. Lin Y H, Cai J, Li M, et al. High Dielectric and Nonlinear Electrical Behaviors in TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(17): 172 902–172 902-3

    Article  Google Scholar 

  22. Cai J, Lin Y H, Cheng B, et al. Dielectric and Nonlinear Electrical Behaviors Observed in Mn-Doped CaCu3Ti4O12 Ceramic[J]. Applied Physics Letters, 2007, 91(25): 252 905

    Article  Google Scholar 

  23. Yuan J, Lin YH, Lu H, et al. Dielectric and Varistor Behavior of CaCu3Ti4O12-MgTiO3 Composite Ceramics[J]. Journal of the American Ceramic Society, 2011, 94(7): 1 966–1 969

    Article  Google Scholar 

  24. Lin Y H, Cai J, Li M, et al. Grain Boundary Behavior in Varistor-Capacitor TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Journal of Applied Physics, 2008, 103(7): 074 111

    Article  Google Scholar 

  25. Patterson E A, Kwon S, Huang C C, et al. Effects of ZrO2 Additions on the Dielectric Properties of CaCu3Ti4O12[J]. Applied Physics Letters, 2005, 87(18): 182 911–182 911-3

    Article  Google Scholar 

  26. Sakamaki R, Cheng B, Cai J, et al. Preparation of TiO2-Enriched CaCu3Mn0.1Ti3.9O12 Ceramics and Their Dielectric Properties[J]. Journal of the European Ceramic Society, 2010, 30(1): 95–99

    Article  Google Scholar 

  27. Lin Y H, Cai J, Li M, et al. High Dielectric and Nonlinear Electrical Behaviors in TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(17): 172 902–172 902-3

    Article  Google Scholar 

  28. Clarke D R. Varistor Ceramics[J]. Journal of the American Ceramic Society, 1999, 82(3): 485–502

    Article  Google Scholar 

  29. Li M, Feteira A, Sinclair D C, et al. Influence of Mn Doping on the Semiconducting Properties of CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(23): 232 903–232 903-3

    Article  Google Scholar 

  30. Fang T T, Wang Y H. Reassessment of Copper and Titanium Valences and Excess Holes in Oxygen 2p Levels of CaCu3Ti4O12[J]. Journal of The Electrochemical Society, 2011, 158(9): G207–G210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xiong  (熊锐).

Additional information

Funded by The National Natural Science Foundation of China (Nos. 51172166, 51202078, and 61106005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, F., Xiong, R. Small Rb+ doping in CaCu3Ti4O12-A possible approach to reduce dielectric loss. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 912–916 (2014). https://doi.org/10.1007/s11595-014-1019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-1019-z

Key words

Navigation