Skip to main content
Log in

Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structure of soda-calcia-magnesia-silicate glasses doped with rare-earth fluoride (NdF3) was investigated by Fourier transform infrared spectrometer. The density and microhardness have been investigated in order to study the effect of doping NdF3 on the physical properties of the studied glasses. The results showed that the density of glasses increases with the increase in NdF3 contents. While, the increase of NdF3 contents led to decrease the microhardness values of the studied samples. The AC electrical properties of samples were measured in the frequency interval 100 Hz up to 1 MHz. The increase of NdF3 doping generally increases the conductivity and dielectric constants of the samples slightly. The obtained experimental data from samples were discussed based on the internal structure of the glass and the distribution of its constituents, connectivity and number of free charges or broken bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Lakshminarayana, M. Mao, R. Yang, J.R. Qiu, M.G. Brik, Phys. B 404, 3348–3355 (2009)

    Article  CAS  Google Scholar 

  2. J. Marchi, D.S. Morais, J. Schneider, J.C. Bressiani, A.H.A. Bressiani, J. Non-Cryst. Solids 351, 863–868 (2005)

    Article  CAS  Google Scholar 

  3. K. Gatterer, G. Pucker, W. Jantscher, H.P. Fritzer, S. Arafa, J. Non-Cryst. Solids 231, 189–199 (1998)

    Article  CAS  Google Scholar 

  4. W.A. Pisarski, T. Goryczka, B. Wodecka-Dus, M. Plonska, J. Pisarska, Mater. Sci. Eng. B122, 94–99 (2005)

    Article  CAS  Google Scholar 

  5. M. Das, K. Annapurna, P. Kundu, R.N. Dwivedi, S. Buddhudu, Mater. Lett. 60, 222–229 (2006)

    Article  CAS  Google Scholar 

  6. S. Mohana, K.S. Thind, G. Sharma, L. Gerward, Spectrochim. Acta Part A 70, 1173–1179 (2008)

    Article  Google Scholar 

  7. L.R. Moorthy, T.S. Rao, M. Jayasimhadri, A. Radhapathy, D.V.R. Murthy, Spectrochim. Acta Part A 60, 2449–2458 (2004)

    Article  CAS  Google Scholar 

  8. Q. Yanbo, D. Ning, M. Peng, L. Yang, D. Chen, J. Qiu, C. Zhu, A. Tomoko, J. Rare Earths 24(6), 765–770 (2006)

    Article  Google Scholar 

  9. Z. Qinling, X. Lei, L. Liying, W. Wencheng, Z. Congshan, G. Fuxi, Opt. Mater. 25(3), 313–319 (2004)

    Article  Google Scholar 

  10. P. Chimalawong, J. Kaewkhao, C. Kedkaew, P. Limsuwan, J. Phys. Chem. Solids 71, 965–970 (2010)

    Article  CAS  Google Scholar 

  11. M. Wang, J. Cheng, M. Li, J. Rare Earths Spec. 28, 308 (2010)

    Article  Google Scholar 

  12. M. Li, Z. Liu, Y. Hu, Z. Shi, H. Li, Colloids Surf. A Physicochem. Eng. Aspects 301, 153 (2007)

    Article  CAS  Google Scholar 

  13. M. El-Okr, M. Ibraem, M. Farouk, J. Phys. Chem. Solids 69, 2564 (2008)

    Article  CAS  Google Scholar 

  14. J. Johnson, R. Weber, M. Grimsditch, J. Non-Cryst. Solids 35, 1650 (2005)

    Google Scholar 

  15. F. Lofaj, R. Satet, M.J. Hoffmanna, A.R. De Arellano Lopez, J. Eur. Ceram. Soc. 24, 3377 (2004)

    Article  CAS  Google Scholar 

  16. S. Hampshire, J.P. Michael, J. Non-Cryst. Solids 344, 1 (2004)

    Article  CAS  Google Scholar 

  17. A. Flórez, E.M. Ulloa, R. Cabanzo, J. Alloys Compd. 488, 606–611 (2009)

    Article  Google Scholar 

  18. J.H. Campbell, Lawrence Livermore National Laboratory Report, UCRL-JC-129507 (1998) p. 1

  19. C.K. Jayasankar, R. Balakrishnaiah, V. Venkatramu, A.S. Joshi, A. Speghini, M. Bettinelli, J Alloys Compd 451, 697–701 (2008)

    Article  CAS  Google Scholar 

  20. J. Pisarska, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Goryczka, W.A. Pisarski, J. Alloys Compd. 451, 223–225 (2008)

    Article  CAS  Google Scholar 

  21. W. Mi-tang, C. Jin-shu, L. Mei, H. Feng, Phys. B 406, 187–191 (2011)

    Article  Google Scholar 

  22. M.M. Gomaa, P. Alikaj, Mar. Geophys. Res. 4(30), 265–276 (2010)

    Google Scholar 

  23. M.M. Gomaa, R.M. Elsayed, Geophys. Prospect. 1(57), 141–149 (2009)

    Article  Google Scholar 

  24. W.C. Chew, J.A. Kong, IEEE Trans. Microw. Theory Tech. MTT-28(2), 98–104 (1980)

    Article  Google Scholar 

  25. N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, J. Alloys Compd 480, 516–520 (2009)

    Article  CAS  Google Scholar 

  26. J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Marcel Dekker Inc., NY, 1967), p. 409

    Google Scholar 

  27. K.J. Rao, Structural Chemistry of Glasses (Elsevier, NY, 2002)

    Google Scholar 

  28. W. Mi-tang, C. Jin-shu, L. Mei, H. Feng, Phys. B 406, 187–191 (2011)

    Article  Google Scholar 

  29. M.S. Gaafar, S.Y. Marzouk, Phys. B 388, 294 (2007)

    Article  CAS  Google Scholar 

  30. R.A. Condrate, Key Eng. Mater. 94–95, 209–232 (1994)

    Article  Google Scholar 

  31. F.L. Galeener, Phys. Rev. B 19, 4292 (1979)

    Article  CAS  Google Scholar 

  32. L. Yaohui, L. Kaiming, C. Jianwei, X. Bo, J. Non-Cryst. Solids 356, 502–508 (2010)

    Article  Google Scholar 

  33. K. Gurbinder, K. Manoj, A. Anu, O.P. Pandey, K. Singh, J. Non-Cryst. Solids 357, 858–863 (2011)

    Article  Google Scholar 

  34. W. Mi-Tang, C. Jin-shu, L. Mei, H. Feng, Phys. B 406, 187–191 (2011)

    Article  Google Scholar 

  35. G. Navara, J. Non-Cryst. Solids 351, 1796 (2005)

    Article  Google Scholar 

  36. G. Navara, J. Non-Cryst. Solids 353, 555 (2007)

    Article  Google Scholar 

  37. D. Cacaina, H. Ylanen, S. Simon, M. Hupa, J. Mater. Sci. Mater. Med. 19, 1225–1233 (2008)

    Article  CAS  Google Scholar 

  38. A.M.B. Silva, C.M. Queiroz, S. Agathopoulos, R.N. Correia, M.H.V. Fernandes, J.M. Oliveira, J. Mol. Struct. 986, 16–21 (2011)

    Article  CAS  Google Scholar 

  39. R. Kumar, M. Rami Reddy, J. Non-Cryst. Solids 358, 25–29 (2012)

    Article  Google Scholar 

  40. A.R. Kumar, C.K. Chakravarthi, M. RamiReddy, N. Veeraia, Phys. B 407, 593–597 (2012)

    Article  Google Scholar 

  41. A.M. Efimov, J. Non-Cryst. Solids 93, 334 (2003)

    Google Scholar 

  42. G. Navara, J. Non-Cryst. Solids 351, 1796 (2005)

    Article  Google Scholar 

  43. G. Navara, J. Non-Cryst. Solids 353, 555 (2007)

    Article  Google Scholar 

  44. M.L. Baesso, A.C. Bento, A.R. Duarte, A.M. Neto, L.C.M. Miranda, J.A. Sampaio, T. Catunda, S. Gama, F.C.G. Gandra, J. Appl. Phys. 85, 8112 (1999)

    Article  CAS  Google Scholar 

  45. M.S. Gaafar, S.Y. Marzouk, Phys. B 388, 294 (2007)

    Article  CAS  Google Scholar 

  46. A. Steimacher, M.J. Barboza, A.M. Farias, O.A. Sakai, J.H. Rohling, A.C. Bento, M.L. Baesso, A.N. Medina, C.M. Lepienski, J. Non-Cryst. Solids 354, 4749–4750 (2008)

    Article  CAS  Google Scholar 

  47. S. Ibrahim, H. Darwish, M.M. Gomaa, J. Mater. Sci. Mater. Electron 23, 1131–1142 (2012)

    Article  CAS  Google Scholar 

  48. M.M. Smedskjaer, J.C. Mauro, Y. Yue, Phys. Rev. Lett. 105, 115503 (2010)

    Article  Google Scholar 

  49. J. Zarzycki, Materials Science and Technology, vol. 9 (VCH, Weinheim, Cambridge University Press, 1991)

  50. A. Petzold, F.G. Withsmann, H. Von Kampiz, Glastech. Ber. 43, 56 (1961)

    Google Scholar 

  51. J.E. Neely, J.D. Mackenzie, J. Mater. Sci. 3, 603 (1968)

    Article  CAS  Google Scholar 

  52. B. Indrajit Sharmaa, P.S. Robib, A. Srinivasana, Mater. Lett. 57, 3504–3507 (2003)

    Article  Google Scholar 

  53. J.E. Shelby, Introduction to Glass Science and Technology (RSC, UK, 1997)

    Google Scholar 

  54. H. Darwish, M.M. Gomaa, J. Mater. Sci. Mater. Electron 17, 35–42 (2006)

    Article  CAS  Google Scholar 

  55. M.M. Gomaa, H. Darwish, S.M. Salman, J. Mater. Sci. Mater. Electron 19, 5–15 (2008)

    Article  CAS  Google Scholar 

  56. H.M. Gobara, M.M. Gomaa, Petroleum Sci. Technol. 27(14), 1572–1591 (2009)

    Article  CAS  Google Scholar 

  57. M.M. Gomaa, Ann. Geophys. 51(5/6), 801–811 (2008)

    Google Scholar 

  58. M.M. Gomaa, H.M. Gobara, Mater. Chem. Phys. 113(2–3), 790–796 (2009)

    Article  CAS  Google Scholar 

  59. M.M. Gomaa, H.A. Abo-Mosallam, H. Darwish, J. Mater. Sci. Mater. Electron. 20(6), 507–516 (2009)

    Article  CAS  Google Scholar 

  60. M.M. Gomaa, A.A. Shaltout, M. Boshta, Mater. Chem. Phys. 114(1), 313–318 (2009)

    Article  CAS  Google Scholar 

  61. M.M. Gomaa, Geophys. Prospect. 57, 1091–1100 (2009)

    Article  Google Scholar 

  62. M.M. Gomaa, P. Alikaj, Mar. Geophys. Res. 4(30), 265–276 (2010)

    Google Scholar 

  63. M.M. Gomaa, Horizons in Earth Science Research, Chap. 2, In: Horizons in Earth Science Research, vol. 6, ed, by B. Veress, J. Szigethy (Nova Science Publishers, Inc., 2009) ISBN 978-1-61470-462-1, pp. 83–146

  64. M.M. Gomaa, Ann. Geophys. 51(5/6), 801–811 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Darwish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwish, H., Ibrahim, S. & Gomaa, M.M. Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3 . J Mater Sci: Mater Electron 24, 1028–1036 (2013). https://doi.org/10.1007/s10854-012-0873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0873-8

Keywords

Navigation