Skip to main content
Log in

Electrical and physicochemical properties of some Ag2O-containing lithia iron silica phosphate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper reports the influence of Ag2O addition at the expense of Li2O on the local structure of xAg2O·(30 − x)Li2O·10Fe2O3·10SiO2·50P2O5 glass matrix (with x = 0, 0.5, 1, 1.5 and 2 mol %). The phosphate structural units of the network former are assessed from Fourier transform infrared (FT-IR) spectroscopy. The addition of Ag2O to the glass network matrix ≤1 mol % leads to the occurrence of a depolymerization process of the phosphate structure and consequently, to the appearance of a distortion of the PO4 tetrahedra. When the content of Ag2O is increased from 1.5 up to 2 mol %, a remarkable polymerization process has been observed. The density, molar volume, microhardness and chemical durability have been investigated in order to study the effect of Ag2O/Li2O replacements on the physicochemical properties the studied glasses. The AC electrical properties are affected to a great extent with composition. These results are related to the internal structure of the glass samples. The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 100 Hz–100 kHz and the effect of compositional changes on the measured properties was investigated. Measurements showed that the electrical responses of glass samples were different and complex for interpretation. The increase of Ag2O addition at the expense of Li2O contents (from 0 to 1 mol %) led to increase the conductivity, dielectric constant and dielectric losses of samples. The addition of more Ag2O at the expense of Li2O (from 1.5 to 2 mol %), resulting into decreasing the conductivity, the dielectric constant and dielectric losses of the studied glasses. The experimental data of the glass samples were argued to the internal structure of the glasses and the nature and role-played by weakening or increasing the rigidity of the structure of the sample. It could be concluded, therefore, that the AC electrical properties of the samples were influenced by the distribution of its constituents, connectivity, and number of free charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.A. Bingham, R.J. Hand, O.M. Hannant, S.D. Forder, S.H. Kilocoyne, J. Non-Cryst. Solids 355, 1526–1538 (2009)

    Article  CAS  Google Scholar 

  2. X.J. Xu, D.E. Day, Phys. Chem. Glasses 31(5), 183 (1990)

    CAS  Google Scholar 

  3. Y.B. Peng, D.E. Day, Glass. Technol. 32(6), 200 (1991)

    CAS  Google Scholar 

  4. R.K. Brow, J. Non-Cryst. Solids 263–264, 1–28 (2000)

    Article  Google Scholar 

  5. M. Karabulut, E. Melnik, R. Stefan, G.K. Marasinghe, C.S. Ray, C.R. Kurkjian, D.E. Day, J. Non-Cryst. Solids 288, 8–17 (2001)

    Article  CAS  Google Scholar 

  6. Lee ETY, Taylor ERM (2006) Opt. Mater. 28: 200

    Google Scholar 

  7. B.C. Sales, L.A. Boatner, Science 226, 45 (1984)

    Article  CAS  Google Scholar 

  8. D.E. Day, Z. Wu, C.S.M. Ray, P. Hrma, J. Non-Cryst. Solids 241, 1–12 (1998)

    Article  CAS  Google Scholar 

  9. Shih PY, Ding JY, Lee SY (2003) Mat. Chem. Phys. 80: 391

    Google Scholar 

  10. Z. Pawlak, P.K.D.V. Yarlagadda, R. Frost, D. Hargreaves, J. Achiev. Mat. Manuf. Eng. 17(1–2), 201–204 (2006)

    Google Scholar 

  11. I. Ardelean, C. Horea, J Optoelectron Adv Mat 8(3), 1111–1113 (2006)

    CAS  Google Scholar 

  12. Morey GW (1954) Properties of glass (Reinhold, New York)

  13. K.E. Wallace, R.G. Hill, J.T. Pembroke et al., J. Mater. Sci: Mater. Med. 10, 697–701 (1999)

    Article  CAS  Google Scholar 

  14. N. Vedeanu, O. Cozar, I. Ardelean, B. Lendl, D.A. Magdas, Vibr. Spec. 48, 259 (2008)

    Article  CAS  Google Scholar 

  15. B.H. Choi, M.J. Ji, Y.T. An, Y.S. Ko, Y.H. Lee, J. Korean Ceram Soc 45, 459 (2008)

    Article  CAS  Google Scholar 

  16. A. Magistris, Ser. E Appl. Sci. 250, 213–230 (1993)

    CAS  Google Scholar 

  17. M. Aniya, J. Kawamura, Solid State Ion 154–155, 343 (2002)

    Article  Google Scholar 

  18. C. Julien, G.-A. Nazri, Solid State Batteries: Materials Design and Optimization (Kluwer, Boston, 1994)

    Book  Google Scholar 

  19. J.E. Garbarczyk, P. Machowski, M.L. Wasiucionek, L. Tykarski, R. Bacewicz, A. Aleksiejuk, Solid State Ion 136, 1077 (2000)

    Article  Google Scholar 

  20. M.B. Volf, Mathematical approach to glass, Glass Science and Technology, vol. 9 (Elsevier, New York, 1998)

    Google Scholar 

  21. M.M. Gomaa, P. Alikaj, Effect of electrode contact impedance on a. c. electrical properties of wet hematite sample. Mar. Geophys. Res. 30(4), 265–276 (2010)

    Article  Google Scholar 

  22. O. Cozar, D.A. Magdas, L. Nasdala, I. Ardelean, G. Damian, J. Non-Cryst. Solids 352, 3121 (2006)

    Article  CAS  Google Scholar 

  23. Y.M. Moustafa, K. El-Egili, J. Non-Cryst. Solids 240, 144 (1998)

    Article  CAS  Google Scholar 

  24. G.S. Henderson, R.T. Amos, J. Non-Cryst. Solids 328, 1 (2003)

    Article  CAS  Google Scholar 

  25. K. Sambasiva Rao, M. Srinivasa Reddy, V. Ravi Kumar, N. Veeraiah, Mat. Chem. Phys. 111, 283–292 (2008)

    Article  CAS  Google Scholar 

  26. N.S. Hussain, M.A. Lopes, J.D. Santos, Mat. Chem. Phys 88, 5 (2004)

    Article  Google Scholar 

  27. K.A. Ali, A.G. El–Din Mostafa, Turk J. Phys. 27, 225–233 (2003)

    CAS  Google Scholar 

  28. J. Schwarz, H. Ticha, L. Tichy, R. Mertens, J. Optoelectron. Adv. Mat. 6(3), 737–746 (2004)

    CAS  Google Scholar 

  29. M. Karabulut, E. Metwalli, R.K. Brow, J. Non-Cryst. Solids 283, 211–219 (2001)

    Article  CAS  Google Scholar 

  30. I.O. Mazail, L.C. Barbosa, O.L. Alves, J. Mater. Sci. 39, 1987–1995 (2004)

    Article  Google Scholar 

  31. Tiwari B, Dixit A, Kothiyal GP, Pandey M, Deb SK (2006) The National Symposium on Science & Technology of Glass and Glass-Ceramics (NSGC-06) held during September 15–16 (2006) at BARC, Mumbai

  32. J. Byun, B. Kim, K. Hong, H. Jung, S. Lee, A.A. Izyneev, J. Non-Cryst. Solids 190, 288–295 (1995)

    Article  CAS  Google Scholar 

  33. T. Jermaumi, M. Mafid, N. Niegisch, M. Mennig, A. Sabir, N. Toreis, Mater. Res. Bull. 37, 49–57 (2002)

    Article  Google Scholar 

  34. H. Gao, T. Tan, D. Wang, J. Controlled Release 96, 21–28 (2004)

    Article  CAS  Google Scholar 

  35. P.Y. Shih, S.W. Yung, T.S. Chin, J. Non-Cryst. Solids 224, 211–222 (1999)

    Article  Google Scholar 

  36. D. Carta, J.C. Knowles, M.E. Smith, R.J. Newport, J. Non-Cryst. Solids 353, 1141–1149 (2007)

    Article  CAS  Google Scholar 

  37. K. Sambasiva Rao, N. Krishna Mohan, N. Veeraiah, Turk J. Phys. 31, 11–29 (2007)

    Google Scholar 

  38. S.T. Reis, D.L.A. Faria, J.R. Martinelli, W.M. Pontuschka, D.E. Day, C.S.M. Partiti, J. Non-Cryst. Solids 304, 188–194 (2002)

    Article  CAS  Google Scholar 

  39. D. Muresan, M. Vasilescu, I. Balasz, C. Popa, W. Kiefer, S. Simon, J. Optoelectron. Adv. Mat. 8(2), 558–560 (2006)

    CAS  Google Scholar 

  40. I.N. Chakraborty, R.A. Condrate, Phys. Chem. Glasses 26(3), 68–73 (1985)

    CAS  Google Scholar 

  41. M. Hafid, T. Jermoumi, N. Niegisch, M. Mennig, Mater. Res. Bull. 36, 2375–2382 (2001)

    Article  CAS  Google Scholar 

  42. N. Nagarjuna, T. Satyanarayana, Y. Gandhi, N. Veeraiah, J. Alloys Compd. 479, 549–556 (2009)

    Article  CAS  Google Scholar 

  43. D. Muresan, D. Bathory, M. Keul, I. Balasz, S. Simon, J. Optoelectron. Adv. Mater. 7(6), 2835–2838 (2005)

    CAS  Google Scholar 

  44. D. Muresan, M. Dragan Bularda, C. Popa, L. Baia, S. Simon, Rom. J. Phys. 51(1–2), 231–237 (2006)

    CAS  Google Scholar 

  45. F. Moreau, A. Duran, F. Munoz, J. Euro. Ceram. Soc. 29, 1895–1902 (2009)

    Article  CAS  Google Scholar 

  46. L. Baia, D. Muresan, M. Baia, J. Popp, S. Simon, Vib. Spectrosc. 43, 313–318 (2007)

    Article  CAS  Google Scholar 

  47. P.W. McMillan, Glass-Ceramics, 2nd edn. (Academic Press, NY, 1979)

    Google Scholar 

  48. A. Chahine, M. Et-tabirou, M. Elbenaissi, M. Haddadb, J.L. Pascal, Mater. Chem. Phys. 84, 341–347 (2004)

    Article  CAS  Google Scholar 

  49. M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, J. Zhang, Mater. Chem. Phys. 114, 295–299 (2009)

    Article  CAS  Google Scholar 

  50. B.S. Bae, M.C. Weinberg, Glass Technol. 35(2), 83–88 (1994)

    CAS  Google Scholar 

  51. A.K. Varshneya, Fundamentals of Inorganic Glasses (Academic press, London, 1994), p. 35

    Google Scholar 

  52. D. Cacaina, S. Simon, J. Optoelectron. Adv. Mater. 5(1), 191–194 (2003)

    CAS  Google Scholar 

  53. H. Darwish, M.M. Gomaa, Effect of compositional changes on the structure and properties of alkali- alumino borosilicate glasses. J. Mater. Sci.: Mater. Electron. 17, 35–42 (2006)

    Article  CAS  Google Scholar 

  54. M.M. Gomaa, H. Darwish, S.M. Salman, Electrical properties of someY2O3 and/or Fe2O3-containing lithium silicate glasses and glass-ceramics. J. Mater. Sci.: Mater. Elect. 19, 5–15 (2008)

    Article  CAS  Google Scholar 

  55. H.M. Gobara, M.M. Gomaa, Electrical properties of Ni/Silica Gel and Pt/γ-alumina catalysts in relation to catalytic activity. Petroleum Sci. Technol. 27(14), 1572–1591 (2009)

    Article  CAS  Google Scholar 

  56. M.M. Gomaa, R.M. Elsayed, Thermal effect of magma intrusion on electrical properties of magnetic rocks from Hamamat sediments, NE Desert, Egypt. Geophys. Prospect. 57(1), 141–149 (2009)

    Article  Google Scholar 

  57. M.M. Gomaa, Relation between electric properties and water saturation for hematitic sandstone with frequency. Ann. Geophys. 51(5/6), 801–811 (2008)

    Google Scholar 

  58. M.M. Gomaa, H.M. Gobara, Electrical properties of Ni/silica gel and Pt/γ-Alumina catalysts in relation to metal content in the frequency domain. Mater. Chem. Phys. 113(2–3), 790–796 (2009)

    Article  CAS  Google Scholar 

  59. M.M. Gomaa, H.A. Abo-Mosallam, H. Darwish, Electrical and mechanical properties of alkali barium titanium alumino borosilicate glass-ceramics containing strontium or magnesium. J. Mater. Sci.: Mater. Electron. 20(6), 507–516 (2009)

    Article  CAS  Google Scholar 

  60. M.M. Gomaa, A.A. Shaltout, M. Boshta, Electrical properties and mineralogical investigation of Egyptian iron ore deposits. Mater. Chem. Phys. 114(1), 313–318 (2009)

    Article  CAS  Google Scholar 

  61. M.M. Gomaa, Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non-polarizing electrodes. Geophys. Prospect. 57, 1091–1100 (2009)

    Article  Google Scholar 

  62. N. Krishna Mohan, K. Sambasiva Rao, Y. Gandhi, N. Veeraiah, Phys. B 389, 213 (2007)

    Article  Google Scholar 

  63. A. Veerabhadra Rao, C. Laxmikanth, N. Veeraiah, J. Phys. Chem. Solids 67, 2263 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Darwish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, S., Darwish, H. & Gomaa, M.M. Electrical and physicochemical properties of some Ag2O-containing lithia iron silica phosphate glasses. J Mater Sci: Mater Electron 23, 1131–1142 (2012). https://doi.org/10.1007/s10854-011-0561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0561-0

Keywords

Navigation