Skip to main content
Log in

Performance of graphite nanoplatelet/silicone composites as thermal interface adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphite nanoplatelets (GNP)/silicone composites are potential thermal interface materials due to their high thermal conductivity and compliance. In this study, performance as thermal interface materials is studied by measuring thermal contact resistance. The effect of surface roughness, particle size of GNPs, wt% GNPs, temperature and applied pressure on the thermal contact resistance of the composite coatings was determined. The GNP/silicone coating performed much better on rough surfaces than on smooth surfaces. The composite coating consisting of large GNPs is more effective than small GNPs probably due to the two times higher thermal conductivity of the former. The thermal contact resistance of the GNP/silicone composite increased by ~3–10% with an increase of temperature but remained unaffected by an increase of pressure. The comparison of GNP/silicone composite coatings with GNP-based thermal pastes showed that the former perform much better in thick bond lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.K. Schelling, L. Shi, K.E. Goodson, Mater. Today 8, 30 (2005)

    Article  CAS  Google Scholar 

  2. A. L. Peterson, in 40th Electronic Components and Technology Conference Proceedings, vol 613, 1990

  3. M. Mahalingam, Proc. IEEE 73, 1396 (1985)

    Article  Google Scholar 

  4. D. D. L. Chung, C. Zweben, K. Anthony, Z. Carl, in Comprehensive Composite Materials (Pergamon, Oxford, 2000), p. 701

  5. M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005)

    Article  CAS  Google Scholar 

  6. C. Lin, D.D.L. Chung, Carbon 45, 2922 (2007)

    Article  CAS  Google Scholar 

  7. R. Prasher, Proc. IEEE 94, 1571 (2006)

    Article  CAS  Google Scholar 

  8. C. Lin, D.D.L. Chung, Carbon 47, 295 (2009)

    Article  CAS  Google Scholar 

  9. F. Sarvar, D. C. Whalley, P. P. Conway, IEEE, 2006 Electronics Systemintegration Technology Conference Dresden, Germany, vol 1292, 2006

  10. D.D.L. Chung, J. Mater. Eng. Perform. 10, 56 (2001)

    Article  CAS  Google Scholar 

  11. J. Liu, T. Wang, B. Carlberg, M. Inoue, Electron Syst Integr Technol Conf 2, 351 (2008)

    Google Scholar 

  12. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007)

    Article  CAS  Google Scholar 

  13. K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Microelectron. Reliab. 51, 2031 (2011)

    Article  Google Scholar 

  14. I.M. Nnebe, C. Feger, IEEE Trans. Adv. Packag. 31, 512 (2008)

    Article  CAS  Google Scholar 

  15. J.P. Gwinn, R.L. Webb, Microelectron. J. 34, 215 (2003)

    Article  CAS  Google Scholar 

  16. R. Linderman, T. Brunschwiler, B. Smith, B. Michel, THERMINIC 2007 (2007)

  17. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Carbon 45, 1446 (2007)

    Article  CAS  Google Scholar 

  18. B.Z. Jang, A. Zhamu, J. Mater. Sci. 43, 5092 (2008)

    Article  CAS  Google Scholar 

  19. H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)

    Article  CAS  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  CAS  Google Scholar 

  21. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  CAS  Google Scholar 

  22. R.F. Hill, P.H. Supancic, J. Am. Ceram. Soc. 85, 851 (2002)

    Article  CAS  Google Scholar 

  23. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46, 806 (2008)

    Article  CAS  Google Scholar 

  24. B. Debelak, K. Lafdi, Carbon 45, 1727 (2007)

    Article  CAS  Google Scholar 

  25. Y. Li, C.P. Wong, Mater Sci Eng R Reports 51, 1 (2006)

    Article  Google Scholar 

  26. M.A. Raza, A. Westwood, A. Brown, N. Hondow, C. Stirling, Carbon 49, 4269 (2011)

    Article  CAS  Google Scholar 

  27. M.A. Raza, A.V.K. Westwood, A.P. Brown, C. Stirling, Compos. Sci. Technol. 72, 467 (2012)

    Article  CAS  Google Scholar 

  28. R. S. Prasher, J. C. Matayabas Jr., in Components and Packaging Technologies, IEEE Transactions 2004, p. 28

  29. J.-J. Park, M. Taya, J. Electron. Packag. 128, 46 (2006)

    Article  CAS  Google Scholar 

  30. C.-K. Leong, Y. Aoyagi, D.D.L. Chung, Carbon 44, 435 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Morgan AM&T and EPSRC for funding M.A.R.’s Dorothy Hodgkin Postgraduate Award Scholarship. The authors also thank Mr. Robert Simpson, Technician IMR, for assistance in the design and fabrication of thermal contact resistance measurement rig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Raza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raza, M.A., Westwood, A.V.K., Brown, A.P. et al. Performance of graphite nanoplatelet/silicone composites as thermal interface adhesives. J Mater Sci: Mater Electron 23, 1855–1863 (2012). https://doi.org/10.1007/s10854-012-0674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0674-0

Keywords

Navigation