Skip to main content
Log in

The formation of MgZnO luminescent ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MgxZn1−xO is a promising alloy system with UV-tunable bandgap. The alloy can have the hexagonal or cubic structure depending on the composition x and growth conditions. We present studies of the optical and material properties of Mg0.1Zn0.9O and Mg0.6Zn0.4O sintered ceramics. The rationale for choosing these compositions is that alloys of both the wurtzite and the cubic phases, respectively, can be investigated. To study the alloying dynamics for the optimization of light emission, the properties as a function of annealing temperature in the range of 600–1,100 °C were investigated via micro-photoluminescence, X-ray diffraction, and imaging techniques. For the Mg0.1Zn0.9O it was found that a threshold temperature of ~900 °C is required in order to initiate the formation of the solid solution with the wurtzite structure. At the elevated temperature regime, the photoluminescence energy for this ceramic sample shifted from 3.25 to 3.5 eV, while the ceramic retained the wurtzite structure. The Mg0.6Zn0.4O was found to have a sequence of phases: initially the alloy formed with the wurtzite structure, and then a transition into the NaCl cubic structure took place. Similar to the Mg0.1Zn0.9O, a threshold temperature of ~900 °C was required in order to initiate the alloying process. At that temperature regime an alloy was formed with the wurtzite structure, and its photoluminescence energy was ~3.25 eV. At ~1,100 °C the alloy was found to undergo a phase transition from wurtzite to cubic structure. The photoluminescence energy at that temperature was considerably shifted into the UV-range of 4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Dong, A. Osinsky, B. Hertog, A.M. Dabiran, P.P. Chow, Y.W. Heo, D.P. Norton, S.J. Pearton, J. Elec. Mater. 34, 416 (2005)

    Article  CAS  Google Scholar 

  2. K. Remashan, Y.S. Choi, S.J. Park, J.H. Jang, J. Electrochem. Soc. 157, H1121 (2010)

    Article  CAS  Google Scholar 

  3. X. Dong, Y. Liu, K. Huang, W. Zhao, Y. Ye, X. Xia, Y. Zhang, J. Wang, B. Zhang, G. Du, J. Phys. D Appl. Phys. 42, 235101 (2009)

    Article  Google Scholar 

  4. H. Morkoç, Ü. Özgür, Zinc Oxide Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Google Scholar 

  5. L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, J.Y. Zhang, Solid State Commun. 149, 2021 (2009)

    Article  CAS  Google Scholar 

  6. R.C. Whited, C.J. Flaten, W.C. Walker, Solid State Commun. 13, 1903 (1973)

    Article  CAS  Google Scholar 

  7. P.D. Johnson, Phys. Rev. 94, 845 (1954)

    Article  CAS  Google Scholar 

  8. E.R. Segnit, A.E. Holland, J. Am. Ceram. Soc. 48, 409 (1965)

    Article  CAS  Google Scholar 

  9. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

    Article  CAS  Google Scholar 

  10. T.A. Wassner, B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann, M. Eickhoff, J. Appl. Phys. 105, 023505 (2009)

    Article  Google Scholar 

  11. Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, J. Appl. Phys. 98, 054911 (2005)

    Article  Google Scholar 

  12. H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Niki, T. Tainaka, Y. Chiba, H. Kanie, Appl. Phys. Lett. 91, 261907 (2007)

    Article  Google Scholar 

  13. X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue, A.Y. Kuznetsov, Adv. Mater. 21, 4625 (2009)

    Article  CAS  Google Scholar 

  14. R. Ghosh, D. Basak, J. Mater. Sci. Mater. Electron. 18, S141 (2007)

    Article  CAS  Google Scholar 

  15. J.L. Morrison, J. Huso, H. Hoeck, E. Casey, J. Mitchell, L. Bergman, M. Grant Norton, J. Appl. Phys. 104, 123519 (2008)

    Article  Google Scholar 

  16. J. Huso, J.L. Morrison, H. Che, J.P. Sundararajan, W.-J. Yeh, D. McIlroy, T.J. Williams, L. Bergman, J. Nanomaterials (2011), Article ID 691582

  17. J. Li, J.-H. Huang, W.-J. Song, R.-Q. Tan, Y. Yang, X.-M. Li, J. Mater. Sci. Mater. Electron. 21, 529 (2010)

    Article  CAS  Google Scholar 

  18. H.C. Hsu, C.Y. Wu, H.M. Cheng, W.F. Hsieh, Appl. Phys. Lett. 89, 013101 (2006)

    Article  Google Scholar 

  19. M. Ghosh, A.K. Raychaudhuri, J. Appl. Phys. 100, 034315 (2006)

    Article  Google Scholar 

  20. J. Huso, J.L. Morrison, J. Mitchell, E. Casey, H. Hoeck, C. Walker, W.M. Hlaing Oo, M.D. McCluskey, L. Bergman, Appl. Phys. Lett. 94, 061919 (2009)

    Article  Google Scholar 

  21. L. Bergman, J.L. Morrison, X.-B. Chen, J. Huso, H. Hoeck, Appl. Phys. Lett. 88, 23103 (2006)

    Article  Google Scholar 

  22. U. Sahaym, M.G. Norton, J. Huso, J.L. Morrison, H. Che, L. Bergman, Nanotechnology 22, in print (2011)

  23. M. Hong, D. Fredrick, D.M. Devito, J.Y. Howe, X. Yang, N.C. Giles, J.S. Neal, Z.A. Munir, Int. J. Appl. Ceram. Technol. 8, 725 (2011)

    Article  CAS  Google Scholar 

  24. I.V. Markevich, V.I. Kushnirenko, Solid State Commun. 149, 866 (2009)

    Article  CAS  Google Scholar 

  25. A.T. Santhanam, T.K. Gupta, W.G. Carlson, J. Appl. Phys. 50, 852 (1979)

    Article  CAS  Google Scholar 

  26. F.A. Modine, R.W. Major, S.I. Choi, L.B. Bergman, M.N. Silver, J. Appl. Phys. 68, 339 (1990)

    Article  CAS  Google Scholar 

  27. G.N. Panin, A.N. Baranov, Y.-J. Oh, T.W. Kang, Curr. Appl. Phys. 4, 647 (2004)

    Article  Google Scholar 

  28. A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 4088 (1999)

    Article  CAS  Google Scholar 

  29. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002)

    Article  CAS  Google Scholar 

  30. B.J. Wuensch, T. Vasilos, J. Chem. Phys. 42, 4113 (1965)

    Article  CAS  Google Scholar 

  31. E.F. Schubert, Doping in III-V Semiconductors (Cambridge University Press, USA, 1993)

    Book  Google Scholar 

  32. F.E. Dart, Phys. Rev. 78, 761 (1950)

    Article  CAS  Google Scholar 

  33. D.F. Anthrop, A.W. Searcy, J. Phys. Chem. 68, 2335 (1964)

    Article  CAS  Google Scholar 

  34. B.J. Wuensch, W.C. Steele, T. Vasilos, J. Chem. Phys. 58, 5258 (1973)

    Article  CAS  Google Scholar 

  35. L. Brewer, R.F. Porter, J. Chem. Phys. 22, 1867 (1954)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering under award DE-FG02-07ER46386. The authors also acknowledge the Electron Microscopy Center at the University of Idaho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Bergman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, J.L., Huso, J., Che, H. et al. The formation of MgZnO luminescent ceramics. J Mater Sci: Mater Electron 23, 437–444 (2012). https://doi.org/10.1007/s10854-011-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0530-7

Keywords

Navigation