Skip to main content
Log in

The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Sn3.0Ag0.7Cu (SAC) composite solders were produced by mechanically intermixing 0.5 wt% Al2O3 nanoparticles into Sn3.0Ag0.7Cu solder. The formation and growth kinetics of the intermetallic compounds (IMC) formed during the liquid–solid reactions between SAC-0.5Al2O3 composite solder and Cu substrates at various temperatures ranging from 250 to 325 °C were investigated, and the results were compared to the SAC/Cu system. Scanning electron microscopy (SEM) was used to quantify the interfacial microstructure for each processing condition. The thickness of interfacial intermetallic layers was quantitatively evaluated from SEM micrographs using imaging software. Experimental results showed that IMC could be dramatically affected by a small amount of intermixing 0.5 wt% Al2O3 nanoparticles into Sn3.0Ag0.7Cu solder. A continuous elongated scallop-shaped overall IMC layer was found at SAC/Cu interfaces. However, after the addition of Al2O3 nanoparticles, a discontinuous rounded scallop-shaped overall IMC layer appeared at SAC-0.5Al2O3/Cu interfaces. Kinetics analyses showed that growth of the overall IMC layer in SAC/Cu and SAC-0.5Al2O3/Cu soldering was diffusion controlled. The activation energies calculated for the overall IMC layer were 44.2 kJ/mol of SAC/Cu and 59.3 kJ/mol for SAC-0.5Al2O3/Cu soldering, respectively. This indicates that the presence of a small amount of Al2O3 nanoparticles is effective in suppressing the growth of the overall IMC layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. A27, 95–141 (2000)

    Google Scholar 

  2. I. Anderson, J. Mater. Sci: Mater. Electron. 18, 55–76 (2007)

    Article  CAS  Google Scholar 

  3. J. Glazer, J. Electron. Mater. 23, 693–700 (1994)

    Article  CAS  Google Scholar 

  4. J. Glazer, Inter. Mater. Rev. 40, 65–93 (1995)

    CAS  Google Scholar 

  5. J. Shen, Y.C. Chan, Microelectron. Rel. 49, 223–234 (2009)

    Article  CAS  Google Scholar 

  6. H. Mavoori, S. Jin, J. Electron. Mater. 27, 1205–1210 (1998)

    Article  Google Scholar 

  7. L.C. Tsao, S.Y. Chuang, Mater. Des. 31, 990–993 (2010)

    Article  CAS  Google Scholar 

  8. L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Des. 31, 4831–4835 (2010)

    Article  CAS  Google Scholar 

  9. J.H. Lee, J.H. Park, Y.S. Kim, D.H. Shin, J. Mater. Res. 16, 1227–1230 (2001)

    Article  CAS  Google Scholar 

  10. R.A. Gaqliano, M.E. Fine, J. Electron. Mater. 32, 1441–1447 (2003)

    Article  Google Scholar 

  11. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, E.J. Cotts, J. Elect. Mater. 30, 1157–1164 (2001)

    Article  CAS  Google Scholar 

  12. K.S. Kim, S.H. Huh, K. Suganuma, Microelectr. Rel. 43, 259–267 (2003)

    Article  CAS  Google Scholar 

  13. W. Yang, E.Felton. Lawrence, Robert.W. Messler Jr, J. Electron. Mater. 24, 1465–1472 (1995)

    Article  CAS  Google Scholar 

  14. T.L. Su, L.C. Tsao, S.Y. Chang, T.H. Chuang, JMEPEG 11, 365–368 (2002)

    Article  CAS  Google Scholar 

  15. R.W. Wu, L.C. Tsao, S.Y. Chang, C.C. Jain, R.S. Chen, J.Mater Sci. Mater. Electron. 22, 1181–1187 (2011)

    Article  CAS  Google Scholar 

  16. R.J.K. Wassink, (Electrochemical Publications Ltd., Ayr, Scotland, 1989), p. 149

  17. T.H. Chuang, M.W. Wu, S.Y. Chang, S.F. Ping, L.C. Tsao, J.Mater. Sci. Mater. Electron. 22, 1021–1027 (2011)

    Article  CAS  Google Scholar 

  18. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, J. Electron. Mater. 35, 1672–1679 (2006)

    Article  CAS  Google Scholar 

  19. M. Harada, R. Satoh, IEEE Trans. Comp. Hybrids. Manuf. Tech. 13, 736–742 (1990)

    Article  CAS  Google Scholar 

  20. R.A. Gagliano, M.E. Fine, JOM 53, 33–38 (2001)

    Article  CAS  Google Scholar 

  21. A. Sharif, Y.C. Chan, J. Alloys.Compd. 390, 67–93 (2005)

    Article  CAS  Google Scholar 

  22. K.H. Prakash, T. Sritharan, Acta Mater. 49, 2481–2489 (2001)

    Article  CAS  Google Scholar 

  23. D.Q. Yu, L. Wang, J. Alloys.Compd. 458, 542–547 (2008)

    Article  CAS  Google Scholar 

  24. H.L. John, L.H. Pang, X.Q. Xu et al., J Electron Mater 33, 1219–1226 (2004)

    Article  Google Scholar 

  25. H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, J. Cho, J Electron Mater 38, 802–809 (2009)

    Article  CAS  Google Scholar 

  26. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J Mater Sci. Mater Electron. 21, 421–440 (2010)

    Article  CAS  Google Scholar 

  27. J.C. Leong, L.C. Tsao, C.J. Fang, C.C. Ping, J Mater Sci. Mater Electron. doi:10.1007/s10854-011-0327-8

  28. K. Suganuma, K.S. Kim, S.H. Huh, in International symposium on microelectronics (IMAPS, Washington, DC, 2001), pp. 529–534

  29. L.C. Tsao, J. Alloys. Compd. 509, 2326–2333 (2011)

    Article  CAS  Google Scholar 

  30. L.C. Tsao, C.P. Chu, S.F. Peng, Microelectron. Eng. (2011). doi:10.1016/j.mee.2011.04.034

  31. L.C. Tsao, J. Alloys Compd. 509, 8441–8448 (2011)

    Article  CAS  Google Scholar 

  32. X.Y. Liu, M.L. Huang, C.M.L. Wu, L. Wang, J. Mater. Sci.: Mater. Electron. 21, 1046–1054 (2010)

    Article  CAS  Google Scholar 

  33. S.M.L. Nai, M. Gupta, J. Wei, in 2nd IEEE international nanoelectronics conference, (2008). pp. 15–19

  34. S.M.L. Nai, J. Wei, M. Gupta, J. Alloys. Compd. 473, 100–106 (2009)

    Article  CAS  Google Scholar 

  35. A.K. Gain, T. Fouzder, Y.C. Chan, K. Winco, C. Yung, J. Alloys Compd. 509, 3319–3325 (2011)

    Article  CAS  Google Scholar 

  36. S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. (2011). doi:10.1016/j.matdes.2011.06.044

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Tsao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S.Y., Tsao, L.C., Wu, M.W. et al. The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction. J Mater Sci: Mater Electron 23, 100–107 (2012). https://doi.org/10.1007/s10854-011-0476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0476-9

Keywords

Navigation