Skip to main content
Log in

Effects of addition of copper particles of different size to Sn-3.5Ag solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, copper particles with different sizes 20–30 nm, 3 and 10 μm were incorporated into Sn-3.5Ag solder paste to form Sn–Ag–Cu composite solder. The Cu particles were added at 0.7 and 3% by paste mixing for 30 min. The composite solder samples were prepared on copper substrate at 240°C for 60 s. Differential scanning calorimetry was conducted to measure the melting point of the composite solder. The wetting angle and microstructure of the composite solder were studied using optical microscope and scanning electron microscope. Micro hardness was measured using a 10 gf load. It was reported that the lowest melting point was obtained at 216.3°C when Cu nanoparticles was added at 3% to Sn-3.5Ag. The microstructure of Sn-3.5Ag solder structure was dendritic in nature. With the addition of Cu nanoparticles, the microstructures were modified with more refined Sn structures. The existence of sunflower morphology of un-melted copper was observed when Cu microparticles were added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Zeng, K.N. Tu, Mater. Sci. Eng. 38(2), 55–105 (2002)

    Article  Google Scholar 

  2. J. Pan, B.J. Toleno, T.C. Chou, W.J. Dee, Sold. Surf. Mount Technol. 18(4), 48–56 (2006)

    Article  CAS  Google Scholar 

  3. H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, J. Electron. Mater. 37(1), 1–8 (2008)

    Article  CAS  Google Scholar 

  4. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29(10), 1122–1136 (2000)

    Article  CAS  Google Scholar 

  5. F. Guo, J Mater. Sci. Mater. Electron. 18(1–3), 129–145 (2007)

    CAS  Google Scholar 

  6. S.Y. Hwang, J.W. Lee, Z.H. Lee, J. Electron. Mater. 31(11), 1304–1308 (2002)

    Article  CAS  Google Scholar 

  7. D.C. Lin, T.S. Srivatsan, G.X. Wang, R. Kovacevic, Powder Technol. 166(1), 38–46 (2006)

    Article  CAS  Google Scholar 

  8. W.K. Choi, J.H. Kim, S.W. Jeong, H.M. Lee, J. Mater. Res. Soci. 17(1), 43–51 (2002)

    Article  CAS  Google Scholar 

  9. J.L. Marshall, J. Calderon, J. Sees, G. Lucey, J.S. Hwang, IEEE Trans. Compon. Hybrids Manuf. Technol. 14(4), 698–702 (1991)

    Article  CAS  Google Scholar 

  10. J.L. Marshall, J. Calderon, Solid Surf. Mount Technol. 26, 22–28 (1997)

    Article  Google Scholar 

  11. H.L. Lai, D.H. Guh, J. Electron. Mater. 32(4), 215–220 (2003)

    Article  CAS  Google Scholar 

  12. M. Amagai, Microelectron. Reliab. 48, 1–16 (2008)

    Article  CAS  Google Scholar 

  13. D.C. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajria, M. Petraroli, Mater. Lett. 57, 3193–3198 (2003)

    Article  CAS  Google Scholar 

  14. V. Sivasubramaniam, N.S. Bosco, J.J. Rusch, J. Cugnoni, J. Botsis, J. Electron. Mater. 37(10), 1598–1604 (2008)

    Article  CAS  Google Scholar 

  15. P. Yao, P. Liu, J. Liu, J. Alloys Compd 462(1–2), 73–79 (2008)

    Article  CAS  Google Scholar 

  16. Y.W. Wang, C.C. Chang, C.R. Kao, J. Alloys Compd. 478(1–2), L1–L4 (2009)

    CAS  Google Scholar 

  17. P. Jr. Scarber, G.M. Janowski, Modeling of Composites; Proceeding and Properties, Anaheim, CA, Mineral, Metal, Materials Society/AIME, 57–75 (1996)

  18. J.G. Lee, F. Guo, K.N. Subramanian, J.P. Lucas, Solder. Surf. Mount Technol. 14(2), 11–17 (2002)

    Article  Google Scholar 

  19. F. Gao, S. Mukherjee, Q. Cui, Z. Gu, J. Phys. Chem. 113, 9546–9552 (2009)

    CAS  Google Scholar 

  20. B. Reddy, P. Bhattachary, B. Singh, Mater. Sci. Eng. 44(9), 2257–2263 (2008)

    Google Scholar 

  21. J. Shen, Y.C. Chan, Microelectron. Reliab. 49(3), 223–234 (2009)

    Article  CAS  Google Scholar 

  22. F. Ochoa, J.J. Williams, N. Chawla, J. Miner. Metals Mater. Soci. 55(6), 56–60 (2003)

    CAS  Google Scholar 

  23. P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37(6), 874–879 (2008)

    Article  CAS  Google Scholar 

  24. D.C. Lin, T.S. Srivatsan, G.X. Wang, R. Kovacevic, J. Mater. Eng. Perform. 16(5), 647–654 (2007)

    Article  CAS  Google Scholar 

  25. S. Bader, W. Gust, H. Hieber, Acta Metallurgica Et Materialia 43(1), 329–337 (1995)

    CAS  Google Scholar 

  26. L. Xu, J.H.L. Pang, K.H. Prakash, T.H. Low, IEEE Trans. Compon. Packag. Tech. 28(3), 408–414 (2005)

    Article  CAS  Google Scholar 

  27. K.H. Prakash, T. Sritharan, J. Electron. Mater. 32(9), 939–947 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. M. A. Haseeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadia, A., Haseeb, A.S.M.A. Effects of addition of copper particles of different size to Sn-3.5Ag solder. J Mater Sci: Mater Electron 23, 86–93 (2012). https://doi.org/10.1007/s10854-011-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0441-7

Keywords

Navigation