Skip to main content
Log in

The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mechanical properties (microhardness, tensile strength) of alloys are controlled by their microstructure, which depends strongly on temperature gradient (G) and growth rate (V). Thus, it is important to understand the relationships among G, V and microstructure (rod eutectic) of Sn–Ag solders. The Sn–3.5 wt% Ag eutectic alloy was directionally solidified upward with a constant growth rate, V (16.5 μm/s) at different temperature gradients, G (1.43–4.28 K/mm) and with a constant temperature gradient, G (3.93 K/mm) at different growth rates, V (8.3–500 μm/s) in a Bridgman–type directional solidification furnace. The rod spacings (λ) have been measured from both longitudinal section (parallel to the growth direction, λ L ) and transverse section (perpendicular to the growth direction, λ T ) of the samples. The undercooling values (ΔT) were calculated by using V, λ and system parameters (K 1 and K 2). It was found that the values of λ (λ T , λ L ) decrease while V and G are increasing. The relationships between rod spacing and solidification parameters (G and V) were obtained by linear regression analysis. The dependences of eutectic spacings λ on undercooling (ΔT) are also analyzed. λ2 V, λΔT, ΔTV −0.5 and ΔTG −0.5 values were determined by using λ, ΔT, V and G values. The results obtained in this work are compared with the Jackson–Hunt eutectic theory and the similar experimental works. The experimental \( \lambda_{\text{T}}^{ 2} {\text{V}} \) value (159.3 μm3/s) is slightly lower than the result 174.6 μm3/s calculated from Jackson–Hunt eutectic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Guo. J. Mater. Sci:Mater. El. 18, 129 (2007)

    Google Scholar 

  2. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  3. F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414 (2003)

    Article  CAS  Google Scholar 

  4. H.T. Lee, Y.F. Chen, J. Alloys Compd. 509, 2510 (2011)

    Article  CAS  Google Scholar 

  5. J. Shen, Y.C. Chan, S.Y. Liu, Intermetallics 16, 1142 (2008)

    Article  CAS  Google Scholar 

  6. J. Shen, Y.C. Liu, Y.J. Han, H.X. Gao, C. Wei, Y.Q. Yang, Trans. Nonferrous Met. Soc. China 16, 59 (2006)

    Article  CAS  Google Scholar 

  7. K.A. Jackson, J.D. Hunt, Trans. Metall. Soc. A.I.M.E 236, 112 (1966)

    Google Scholar 

  8. E. Çadırlı, H. Kaya, M. Gündüz, Mater. Res. Bull. 38, 1457 (2003)

    Article  Google Scholar 

  9. M. Gündüz, H. Kaya, E. Çadırlı, A. Özmen, Mater. Sci. Eng. A 369, 215 (2004)

    Article  Google Scholar 

  10. H. Kaya, E. Çadırlı, M. Gündüz, J. Mater. Eng. Perf. 12, 456 (2003)

    Article  CAS  Google Scholar 

  11. S. Ganesan, C.L. Chan, D.R. Poirier, Mater. Sci. Eng. A 151, 97 (1992)

    Article  Google Scholar 

  12. M.S. Bhat, D.R. Poirier, J.C. Heinrich, Metall. Trans. B 26, 1049 (1995)

    Article  Google Scholar 

  13. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, A. Ülgen, J. Alloys Compd. 486, 199 (2009)

    Article  Google Scholar 

  14. T.B. Massalski (Ed.), Binary alloy phase diagrams, vol. 3, ASM International, Materials Park, Ohio (1990)

  15. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, K. Keşlioğlu, A. Ülgen, J. Mater. Sci: Mater. El. 21, 608 (2010)

    Article  Google Scholar 

  16. J.F. Bromley, F. Vnuk, R.W. Smith, J. Mater. Sci. 18, 3143 (1983)

    Article  CAS  Google Scholar 

  17. L.R. Garcia, W.R. Osorio, A. Garcia, Mat. & Design 32, 3008 (2011)

    Article  CAS  Google Scholar 

  18. R.N. Grugel, L.N. Brush, Mater. Charac. 38, 211 (1997)

    Article  CAS  Google Scholar 

  19. H.Q. Bao, F.C.L. Durand, J. Crys. Growth 15, 291 (1972)

    Article  Google Scholar 

  20. E. Çadırlı, A. Ülgen, M. Gündüz, Mater. Trans. JIM 40, 989 (1999)

    Google Scholar 

  21. A. Qurdjini, J. Liu, R. Elliott, Mater. Sci. Technol. 10, 312 (1994)

    Google Scholar 

  22. E. Çadırlı, H. Kaya, M. Gündüz, J. Alloys Compd. 431, 171 (2007)

    Article  Google Scholar 

  23. S. Engin, U. Böyük, N. Maraşlı, J. Alloys Compd. 488, 138 (2009)

    Article  CAS  Google Scholar 

  24. A. Bruson, M. Gerl, Phys. Rev. B 21, 5447 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Niğde University Scientific Research Project Unit under Contract No: FEB 2009/02. Authors would like to thank to the Niğde University Scientific Research Project Unit for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Çadirli.

Appendix

Appendix

See Appendix Table 2.

Table 2 The physical parameters used for Sn–Ag eutectic alloy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şahin, M., Çadirli, E. The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. J Mater Sci: Mater Electron 23, 484–492 (2012). https://doi.org/10.1007/s10854-011-0422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0422-x

Keywords

Navigation