Skip to main content
Log in

Dielectric property and electrical conduction mechanism of ZrO2–TiO2 composite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZrO2–TiO2 composite films were fabricated by radio frequency magnetron sputtering and post annealing in O2. It was found the films remained amorphous below the annealing temperature of 500 °C. The as-deposited ZrO2–TiO2 film has a high dielectric constant of 22, and which increases to 34 after annealing at 400 °C. At low electric field, the dominant conduction mechanisms are Schottky emission for both the as-deposited and the annealed thin films. At high electric field, the conduction mechanism changes to space-charge-limited current and then changes to Poole–Frenkel (PF) emission after annealing at 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy, R. Chau, Intel. Technol. J. 6, 42 (2002)

    Google Scholar 

  2. V.V. Afanas’ev, A. Stesmans, F. Chen, S.A. Campbell, R. Smith, Appl. Phys. Lett. 82, 922 (2003)

    Article  Google Scholar 

  3. V. Mikhelashvili, G. Eisenstein, A. Lahav, Appl. Phys. Lett. 90, 013506 (2007)

    Article  Google Scholar 

  4. H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008)

    Article  Google Scholar 

  5. G. He, L.D. Zhang, M. Liu, J.P. Zhang, X.J. Wang, C.M. Zhen, J. Appl. Phys. 105, 014109 (2009)

    Article  Google Scholar 

  6. G.K. Dalapati, A. Sridhara, A.S.W. Wong, C.K. Chia, D.Z. Chi, Appl. Phys. Lett. 94, 073502 (2009)

    Article  Google Scholar 

  7. Y. Wang, H. Wang, J. Zhang, H.B. Wang, C. Ye, Y. Jiang, Q. Wang, Appl. Phys. Lett. 95, 032905 (2009)

    Article  Google Scholar 

  8. J.P. Chang, Y.S. Lin, Appl. Phys. Lett. 79, 3666 (2001)

    Article  CAS  Google Scholar 

  9. F.C. Chiu, Z.H. Lin, C.W. Chang, C.C. Wang, K.F. Chuang, C.Y. Huang, J.Y. Lee, H.L. Hwang, J. Appl. Phys. 97, 034506 (2005)

    Article  Google Scholar 

  10. M. Zhu, P. Chen, R.K.Y. Fu, W.L. Liu, C.L. Lin, P.K. Chu, Thin Solid Films 476, 312 (2005)

    Article  CAS  Google Scholar 

  11. Y.H. Wu, C.K. Kao, B.Y. Chen, Y.S. Lin, M.Y. Li, H.C. Wu, Appl. Phys. Lett. 93, 033511 (2008)

    Article  Google Scholar 

  12. D. Tsoutsou, L. Lamagna, S.N. Volkos, A. Molle, S. Baldovino, S. Schamm, Appl. Phys. Lett. 94, 053504 (2009)

    Article  Google Scholar 

  13. L. Manchanda, M.D. Morris, M.L. Green, R.B. van Dover, F. Klemens, T.W. Sorsch, P.J. Silverman, G. Wilk, B. Busch, S. Aravamudhan. Microelectron. Eng. 59, 351 (2001)

    Article  CAS  Google Scholar 

  14. S. Chatterjee, S.K. Samanta, H.D. Banerjee, C.K. Maiti, Thin Solid Film 422, 38 (2002)

    Article  Google Scholar 

  15. A. Paskaleva, A.J. Bauer, M. Lemberger, S. Zürcher, J. Appl. Phys. 95, 5583 (2004)

    Article  CAS  Google Scholar 

  16. F. Chen, X. Bin, C. Hella, X. Shi, W.L. Gladfelter, S.A. Campbel, Microelectron. Eng. 72, 263 (2004)

    Article  CAS  Google Scholar 

  17. V.V. Afanas’ev, A. Stesmans, F. Chen, M. Li, S.A. Campbell, J. Appl. Phys. 95, 7936 (2004)

    Article  Google Scholar 

  18. K. Honda, A. Sakai, M. Sakashita, H. Ikeda, S. Zaima, Y. Yasuda, Jpn. J. Appl. Phys. 43, 1571 (2004)

    Article  CAS  Google Scholar 

  19. C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B.Y. Wang, Y.C. Jin, J. Appl. Phys. 107, 104103 (2010)

    Article  Google Scholar 

  20. T. Kim, J. Oh, B. Park, K.S. Hong, Appl. Phys. Lett. 76, 3043 (2000)

    Article  CAS  Google Scholar 

  21. H. Wang, Y. Wang, J. Feng, C. Ye, B.Y. Wang, H.B. Wang, Q. Li, Y. Jiang, A.P. Huang, Z.S. Xiao, Appl. Phys. A. 93, 681 (2008)

    Article  CAS  Google Scholar 

  22. M.-H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, Appl. Phys. Lett. 81, 1071 (2002)

    Article  CAS  Google Scholar 

  23. L.M. Terman, Solid State Electron. 5, 285 (1962)

    Article  CAS  Google Scholar 

  24. M. Houssa, V.V. Afanas’ev, A. Stesmans, M.M. Heyns, Appl. Phys. Lett. 77, 1885 (2000)

    Article  CAS  Google Scholar 

  25. L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Mater. Sci. Semicond. Process. 9, 1125 (2006)

    Article  CAS  Google Scholar 

  26. R. Puthenkovilakam, M. Sawkar, J.P. Chang, Appl. Phys. Lett. 86, 202902 (2005)

    Article  Google Scholar 

  27. P.V. Aleskandrova, V.K. Gueorguiev, Tz.E. Ivanov, J.B. Koprinarova, Eur. Phys. J. B. 52, 453 (2006)

    Article  CAS  Google Scholar 

  28. M.T. Wang, T.H. Wang, J.Y. Lee, Microelectron. Reliab. 45, 969 (2005)

    Article  CAS  Google Scholar 

  29. S. Ramanathan, C.M. Park, P.C. McIntyre, J. Appl. Phys. 91, 4521 (2002)

    Article  CAS  Google Scholar 

  30. F.C. Chiu, J. Appl. Phys. 100, 114102 (2006)

    Article  Google Scholar 

  31. S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istrarov, E.R. Weber, Phys. Rev. B. 61, 10361 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in partial by the National Nature Science Foundation of China (No. 51072049), MOST of China (No.2007CB936202), STD and ED of Hubei Province (Grant Nos. 2009CDA035, 2008BAB010, and Z20091001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, M., Wang, H., Shen, L. et al. Dielectric property and electrical conduction mechanism of ZrO2–TiO2 composite thin films. J Mater Sci: Mater Electron 23, 174–179 (2012). https://doi.org/10.1007/s10854-011-0378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0378-x

Keywords

Navigation