Skip to main content
Log in

Nanostructured ZnO hexagons and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the solvothermal synthesis of nanostructured ZnO hexagons by hydrothermal method via intermediate zinc adipate. The intermediate zinc adipate was obtained using precursors zinc acetate and adipic acid in aqueous and organic medium. Detailed XRD analysis of the zinc adipate was studied for the first time. Thermal study of intermediate showed the formation of ZnO at 400 °C. XRD study demonstrated the existence of wrutzite ZnO of high degree of crystallinity with crystallite size in the range of 20–25 nm. Scanning Electron Microscopy (SEM) showed distinguished morphology in different medium. Transmission Electron Microscopy (TEM) demonstrated nanostructured ZnO hexagons with average size 25–50 nm. The band gap for aqueous and organic mediated ZnO was found to be 3.24 and 3.26 eV, respectively. The band gap obtained is higher than the bulk ZnO, which implies nanocrystalline nature of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Hoelscher, R.E. Shetriff, M.T. Harris, M.J. Callahan, J. Appl. Phys. 88, 2152–2153 (2000)

    Article  CAS  Google Scholar 

  2. S.C. Liu, J.J. Wu, J. Mater. chem. 12(10), 3125–3129 (2002)

    Article  CAS  Google Scholar 

  3. J.J. Wu, S.C. Liu, J. Phys. Chem. B 106(37), 9546–9551 (2002)

    Article  CAS  Google Scholar 

  4. J. Zhang, W. Yu, L.D. Zhang, Phys. Lett. A 299(2–3), 276–281 (2002)

    Article  CAS  Google Scholar 

  5. J.J. Wu, S.C. Liu, Adv. Mater. 14(3), 215–218 (2002)

    Article  CAS  Google Scholar 

  6. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023–2025 (2003)

    Article  CAS  Google Scholar 

  7. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Chem. Mater. 15(1), 305–308 (2003)

    Article  CAS  Google Scholar 

  8. L.C. Campos, M. Tonezzer, A.S. Ferlauto, R. Magalhaes-Paniago, S. Oliveira, R.G. Lacerda, Adv. Mater. 20(8), 1499–1504 (2008)

    Article  CAS  Google Scholar 

  9. W.I. Park, Y.H. Juh, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 964–966 (2003)

    Article  CAS  Google Scholar 

  10. N. Audebrand, J.P. Auffredic, D. Louer, Chem. Mater. 10(9), 2450–2461 (1998)

    Article  CAS  Google Scholar 

  11. P.D. Coozzoli, M.L. Curri, A. Agostiano, G. Leo, M. Lomascolo, J. Phys. Chem. B 107(20), 4756–4762 (2003)

    Article  Google Scholar 

  12. L.F. Dong, Z.L. Cui, Z.K. Zhang, Nanostruct. Mater. 8, 815 (1997)

    Article  CAS  Google Scholar 

  13. P. Ayyub, R. Chandra, P. Taneja, A.K. Sharma, R. Pinto, Appl Phys. A. 73(1), 67–73 (2001)

    Article  CAS  Google Scholar 

  14. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103(8), 459–463 (1997)

    Article  CAS  Google Scholar 

  15. Y.W. Heo, V. Vadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046–3048 (2002)

    Article  CAS  Google Scholar 

  16. J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen, L.C. Chen, Appl. Phys. Lett. 81, 1312–1314 (2002)

    Article  CAS  Google Scholar 

  17. T. Tani, L. Madler, S.E. Pratsinis, J. Nanopart. 4, 337–343 (2002)

    Article  CAS  Google Scholar 

  18. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, J.A. Switzer, Chem. Mater. 13, 508 (2001)

    Article  CAS  Google Scholar 

  19. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78(1), 99–104 (2003)

    Article  Google Scholar 

  20. Y.L. Du, M.S. Zhang, Y. Deng, Q. Chen, Z. Yin, W.C. Chen, Chin. Phys. Lett. 19, 372 (2002)

    Article  Google Scholar 

  21. D. Mondelaers, G. Vanhoyland, H.V. Rul, J.D’. Haen, M.K. Van Bael, J. Mullens, L.C.V. Poucke, Mater. Res. Bull. 37(5), 901 (2002)

    Article  CAS  Google Scholar 

  22. Q.S. Yi, X.M. Wu, Z.C. Tan, J. Inorg. Mater. 16, 620 (2001)

    CAS  Google Scholar 

  23. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Science 309, 1700 (2005)

    Article  CAS  Google Scholar 

  24. P.X. Gao, Y. Ding, Z.L. Wang, Nano Lett. 9(1), 137–143 (2009)

    Article  CAS  Google Scholar 

  25. X. Fan, M. Zhang, I. Shafiq, W. Zhang, C. Lee, S. Lee, Adv. Mater. 21(23), 2393–2396 (2009)

    Article  CAS  Google Scholar 

  26. D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21(15), 3479–3484 (2009)

    Article  CAS  Google Scholar 

  27. N. Sakagami, J. Cryst. Growth 99(1–4), 905–909 (1990)

    Article  CAS  Google Scholar 

  28. H. Nishizawa, T. Tani, K. Matsuka, Committee of American ceramic society, (1984) C-99

  29. W.J. Li, E.W. Shi et al., J. Mater. Res. 14, 1532–1537 (1999)

    Article  CAS  Google Scholar 

  30. T. Trindade, J.D. Pedrosa de Jesus, P.O. Brien, Mater. Chem. 4, 1611–1617 (1994)

    Article  CAS  Google Scholar 

  31. T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wohrle, T. Sugiura, H. Minoura, Chem. Mater. 11, 2657–2667 (1999)

    Article  CAS  Google Scholar 

  32. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203(1-2), 186 (1999)

    Article  CAS  Google Scholar 

  33. K.G. Kanade, B.B. Kale, R.C. Ayier, B.K. Das, Mater. Res. Bull. 41(3), 590–600 (2006)

    Article  CAS  Google Scholar 

  34. K.G. Kanade, B.B. Kale, J.O. Baeg, S.M. Lee, C.W. Lee, S.J. Moon, H. Chang, Mater. Chem. Phys. 102(1), 98–104 (2007)

    Article  CAS  Google Scholar 

  35. J.T. Wang, D. Shu, M. Xiao, Y.Z. Meng, J. Appl. Polym. Sci. 99(1), 200–206 (2006)

    Article  CAS  Google Scholar 

  36. R.M. Silverstein, F.X. Webster, Spectroscopic identification of organic compounds, 6th edn. (John Wiley and sons, New York, 1997), pp. 81–97

    Google Scholar 

  37. Calligaris, M. Silvanio G. Proceeding of third international school and workshop of crystallography on X-ray powder diffraction and its applications, Cairo, Egypt 456, (1990)

  38. A. Chittofrati, E. Matijevic, Colloids Surf. 48, 65 (1990)

    Article  CAS  Google Scholar 

  39. H.M. Huang, Y. Wu, H. Feick, M. Tran, E. Weber, P. Yang, Adv. Mater. 13(2), 113–116 (2001)

    Article  CAS  Google Scholar 

  40. Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Pro. Res. 3, 146 (2002)

    Google Scholar 

  41. P.D. martino, R. Censi, L. Malaj, V. Massarotti, S. Martelli, Cryst. Res. Technol. 42(8), 800–806 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from C-MET, DIT is gratefully acknowledged. Author is thankful to Executive Director, C-MET and Principal, M. P. College, Pimpri, Pune and Principal, Baburaoji Gholap College, Sangvi, Pune for their kind cooperation and strong support. Author acknowledges the support and co-operation of nanocrystalline material group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Kale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorat, J.H., Kanade, K.G., Nikam, L.K. et al. Nanostructured ZnO hexagons and optical properties. J Mater Sci: Mater Electron 22, 394–399 (2011). https://doi.org/10.1007/s10854-010-0149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0149-0

Keywords

Navigation