Skip to main content
Log in

Synthesis of ZnO nanowires by the hydrothermal method, using sol–gel prepared ZnO seed films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanowires with various morphologies are synthesized by the hydrothermal method on silicon substrates coated with ZnO thin films. The ZnO films are used as the seed layer and are prepared using the sol–gel technique. Experimental results demonstrate that the synthesis of ZnO nanowires is dependent on the crystalline properties of the ZnO seed-layer films. Sol concentration is the controlled parameter for the preparation of ZnO seed-layer films in this study. The ZnO films are found to have the hexagonal wurtzite structure with highly preferred growth along the c-axis at suitable sol concentrations. The vertically aligned ZnO nanowire arrays on the substrates are believed to be the result of the epitaxial growth of the ZnO seed layer. Scanning electron microscopy shows that nanowires with uniform distribution in length, diameter, and density are obtained. X-ray diffraction patterns clearly reveal that the ZnO nanowires are primarily grown along the c-axis direction. Transmission electron microscopy and selected-area electron diffraction measurements show that the nanowires have good crystalline properties. The well-aligned and high surface areas of the ZnO nanowires make them a potential candidate for applications in solar cells, field emission devices, and ultra-sensitive gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, Mater. Chem. Phys. 85, 257–262 (2004)

    Article  CAS  Google Scholar 

  2. F. Xu, K. Yu, M.R. Shi, Q.Y. Wang, Z.Q. Zhu, S.H. Huang, J. Nanosci. Nanotechno. 6, 3794–3798 (2006)

    Article  CAS  Google Scholar 

  3. Z. Fan, J.G. Lu, J. Nanosci. Nanotechno. 5, 1561–1573 (2005)

    Article  CAS  Google Scholar 

  4. S.N. Bai, T.Y. Tseng, Thin Solid Films 515, 872–875 (2006)

    Article  CAS  Google Scholar 

  5. M.K. Jayaraj, A. Antony, M. Ramachandran, Bull. Mater. Sci. 25, 227–230 (2002)

    Article  CAS  Google Scholar 

  6. L.N. Dem’yanets, L.E. Li, T.G. Uvarova, J. Mater. Sci. 41, 1439–1444 (2006)

    Article  Google Scholar 

  7. F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Nanotechnology 17, 588–594 (2006)

    Article  CAS  Google Scholar 

  8. W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 80, 4232–4234 (2002)

    Article  CAS  Google Scholar 

  9. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407–409 (2001)

    Article  CAS  Google Scholar 

  10. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113–116 (2001)

    Article  CAS  Google Scholar 

  11. S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Mater. Res. Bull. 43, 244–250 (2008)

    Article  CAS  Google Scholar 

  12. I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, Appl. Phys. Lett. 87, 103110 (2005)

    Article  Google Scholar 

  13. A. Reiser, A. Ladenburger, G.M. Prinz, M. Schirra, M. Feneberg, A. Langlois, R. Enchelmaier, Y. Li, R. Sauer, K. Thonke, J. Appl. Phys. 101, 054319 (2007)

    Article  Google Scholar 

  14. J.B. Baxter, E.S. Aydil, J. Cryst, Growth 274, 407–411 (2005)

    Article  CAS  Google Scholar 

  15. W. Lee, M.C. Jeong, J.M. Myoung, Acta Mater. 52, 3949–3957 (2004)

    Article  CAS  Google Scholar 

  16. S.N. Bai, H.H. Tsai, T.Y. Tseng, Thin Solid Films 516, 155–158 (2007)

    Article  CAS  Google Scholar 

  17. Y. Sun, N.G.N. Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352–357 (2006)

    Article  CAS  Google Scholar 

  18. Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001–1006 (2005)

    Article  Google Scholar 

  19. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. (Wiley-Interscience, New York, 1974), pp. 687–690

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the National Nano Device Laboratories for equipment supporting this research under Contract No. NDL98-C05SP-051. Mr. K. L. Juan and H. T. Lin are appreciated for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shr-Nan Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, SN., Wu, SC. Synthesis of ZnO nanowires by the hydrothermal method, using sol–gel prepared ZnO seed films. J Mater Sci: Mater Electron 22, 339–344 (2011). https://doi.org/10.1007/s10854-010-0139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0139-2

Keywords

Navigation