Skip to main content
Log in

The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of semiconductor nanowires is more and more interested to the applications for building blocks of the innovative nano-sized devices and circuits, but the research and fabrication of these nanowires are also holding a number of difficulties and challenges. Among many different kinds of semiconductor nanowires, Ga2O3 is increasingly grown for many promising applications in nano-device production, namely nanowire LED and Laser. So far there are many synthesizing methods of semiconductor nanowires, among them the vapor–liquid–solid (VLS) method is simple, cheap and popular. However, when we use the VLS method for nanowire growth, various technological problems exist. This paper aims at investigating some influences of the growth technological conditions and Au metal catalyst on the morphology of Ga2O3 nanowire grown by VLS on GaAs substrate. The main considering factors include the different growing temperatures and times, the effects of Au diffusion, Au droplets formation, Au cluster islands formation, and gas volume of the growing tube/ampoule at the 10−1 torr low air pressure. The obtained experimental results regarding the structural properties of nanowires under these effects investigated by scanning electron microscopy, field emission scanning electron microscopy, high angle annular dark field and bright field, scanning transmission electron microscopy, energy-dispersive X-ray techniques, and focus ion beam are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.J. Patently, Nano materials—the driving force. Nanotoday 7(12), 20 (2004)

    Google Scholar 

  2. R.S. Wonders, Nanosci. Eng. Technol. (NSET) 1 (2002)

  3. B. Bhushan, Handbook of Nanotechnology Part A (Springer) 99 (2004)

  4. P. Yang, Y. Wu, R. Fan, Int. J. Nanosci. 1(1), 1 (2002)

    Article  CAS  Google Scholar 

  5. L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Phil. Trans. R Soc. Lond. A 362, 1247 (2004)

    Article  CAS  Google Scholar 

  6. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2(2), 101 (2002)

    Article  CAS  Google Scholar 

  7. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 24 (2004)

    Article  Google Scholar 

  8. M.Z. Atashbar, M.-F. Yu, X. Chen, Investigation and characterization of Ga2O3 nanowire for gas sensing applications. IEEE Sensors (2002)

  9. P.A. Tuan, D.K. An, D.H. Manh, P.V. Phong, L.T. Hoa, in Proceedings of the 5th National Solid State conference, Vietnam, p. 359 (2007)

  10. P.H. Trang, P.V. Vuong, P.V. Phong, N.H. Manh, D.K. An, in Proceedings of the APCTPASEAN workshop on advanced materials science and nanotechnology (Nha Trang, Vietnam) p. 975 (2008)

  11. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganicnanowires. Prog. Solid State Chem. 31, 5–147 (2003). www.elsevier.nl/locate/pssc

  12. B. Bhushan, Semiconductoring nanowires & nanorods: synthesis, properties & applications, Handbook of nanotechnology (Springer, 2004), 4. nanowires, pp. 99–144

  13. I. Mojzes, S. Kokényesi, I.A. Szabó, I. Ivan, B. Pécz, Nanopages 1, 85 (2006)

    Article  Google Scholar 

  14. A. Hemant, M.F. Ann, A.G. Irene, E.D.C. Christopher, C. Paul, ACS Nano. 1(5), 415 (2007)

    Article  Google Scholar 

  15. Synthesis and characterization of nanowires, Roger Prasad MatE 297 and Dr. Zhu Guo, pp. 1–9

  16. Y. Civale, L.K. Nanver, P. Hadley, Aspects of silicon nanowire synthesis by aluminium-catalyzed vapour-liquid-solid mechanism, in Proceedings of 7th annual workshop on semiconductor advances for future electronics and sensors (Veldhoven, The Netherlands), pp. 692–696 (2004)

  17. J. Noborisaka, J. Motohisa, S. Hara, T. Fukui, Appl. Phys. Lett. 87, 093109 (2005)

    Article  Google Scholar 

  18. J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372, 717 (2003)

    Article  CAS  Google Scholar 

  19. B. Kalache, P.R. Cabarraocas, A.F. Morral, Jpn. J. Appl. Phys. 45, L190 (2006)

    Article  CAS  Google Scholar 

  20. Y. Cui, Z. Zhaohui, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire Field Effect Transistor. Nano Lett. 3(2), 149–152 (2003)

    Article  CAS  Google Scholar 

  21. Micro & Nanoelectronics Technology, ed. by D.K. An, in Vietnam Education Publication House (HaNoi, 2009), chapter 12, pp. 479–536; chapter 13, pp. 537–602

  22. J. Kim, Nanodevices by using semiconductor nanowires, University of Texas at Austin, TX, pp. 1–11 (2004)

  23. J.B. Hanno, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of Gold on the growth of silicon nanowires. Nat. Lett. 440, 574 (2006). doi:10.1038/nature. pp. 69–71

    Google Scholar 

  24. M.A. Verheijen, G. Immink, T. de Smet, M.T. Borgstrom, E.P. Bakkers, Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 128, 1353 (2006)

    Article  CAS  Google Scholar 

  25. D.K. An, N.X. Chung, P.A. Tuan, in Proceedings of the APCTPASEAN workshop on advanced materials science and nanotechnology (Nha Trang, Vietnam), p. 518 (2008)

  26. J. Noborisaka, J. Motohisa, S. Hara, T. Fukui, Appl. Phys. Lett. 87, 093109 (2005)

    Article  Google Scholar 

  27. X. Duan, J. Wang, C.M. Lieber, Synthesis and optical properties of Galium arsenide nanowires. Appl. Phys. Lett. 76(9), 1116–1118 (2000)

    Article  CAS  Google Scholar 

  28. K. Watanabe, E. Asano, T. Yamazaki, Y. Kikuchi, I. Hashimoto, Symmetries in BF and HAADF STEM image calculations, Tokyo Metropolitan College of Technology, Tokyo 140-0011, Japan

  29. Binary Phase Diagram, vol. 1. ed. by T.B. Massalki, in American society for metals (Metal park, Ohio, 1986)

  30. E.I. Givargizov, J. Cryst. 31, 20–30 (1975)

    CAS  Google Scholar 

  31. S. Sharma, M.K. Sunkara, R. Miranda, G. Lian, E.C. Dickey, A novel low temperature synthesis method for semiconductor nanowires (AMSCL). MRS spring meeting, April 17, (2001)

Download references

Acknowledgments

The authors would like to express their gratitude to the Institute of Materials Science, VAST for funding the basic research project in 2008 and 2009 to carry out these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac An Dao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dao, K.A., Phan, A.T., Do, H.M. et al. The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate. J Mater Sci: Mater Electron 22, 204–216 (2011). https://doi.org/10.1007/s10854-010-0115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0115-x

Keywords

Navigation