Skip to main content
Log in

Oxidation of sputtered Zr thin film on Si substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Oxidation of sputtered Zr thin film on Si substrate has been investigated by varying oxidation times (5–60 min) at 500 °C. Fourier transform infrared spectroscopy indicated the existence of ZrO2 by showing spectra of Zr–O. Vibration mode of Si–O and Zr–O–Si are also detected for all samples oxidized at different duration. This suggested the existence of SiO x and Zr x Si y O z compounds and they might be located at interfacial layers (ILs) between ZrO2 and Si. Cross-sectional image of high resolution transmission electron microscopy taken from 60-min oxidized sample showed that both ZrO2 and IL thickness is ~3.5 nm. Time-of-flight secondary-ion-mass spectroscopy suggested that Zr x Si y O z may be formed after oxidized for 15 min. The proposed IL is consisted of a mixture of Zr x Si y O z and SiO x . A physical model has been established to explain the observation. Electrical characterization shows that capacitance–voltage curves have small hysteresis and their flatband voltages are shifted to a negative bias. Effective dielectric constant values of the investigated oxides are in the range of 4.22–5.29. Leakage current density–breakdown voltage characteristic shows that 5-min oxidized sample has the lowest dielectric breakdown voltage if compared with the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ITRS 2008 UPDATE (2009) Available from World Wide Web: http://www.itrs.net/Links/2008ITRS/Home2008.htm (Online; Accessed 12th May 2009)

  2. R.M. Wallace, G. Wilk, MRS Bull. March 192, 247 (2002)

    Google Scholar 

  3. S.K. Ray, R. Mahapatra, S. Maikap, J. Mat. Sci. Mat. Electron. 17, 689 (2006)

    Article  CAS  Google Scholar 

  4. H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006)

    Article  CAS  Google Scholar 

  5. L.Q. Zhu, Q. Fang, G. He, M. Liu, L.D. Zhang, Mater. Letts. 60, 888 (2006)

    Article  CAS  Google Scholar 

  6. M. Cassir, F. Goubin, C. Bernay, P. Vernoux, D. Lincot, Appl. Surf. Sci. 193, 120 (2002)

    Article  CAS  Google Scholar 

  7. M. Filipescu, N. Scarisoreanu, V. Craciun, B. Mitu, A. Purice, A. Moldovan, V. Iona, O. Toma, M. Dinescu, Appl. Surf. Sci. 253, 8184 (2007)

    Article  CAS  Google Scholar 

  8. X. Wu, D. Landheer, M.J. Graham, H.W. Chen, T.Y. Huang, T.S. Chao, J. Crystal Growth 250, 479 (2003)

    Article  CAS  Google Scholar 

  9. J.J. Yu, J.-Y. Zhang, I.W. Boyd, Appl. Surf. Sci. 186, 190 (2002)

    Article  CAS  Google Scholar 

  10. H.D. Kim, S.W. Jeong, M.T. You, Y. Roh, Thin Solid Films 515, 522 (2006)

    Article  CAS  Google Scholar 

  11. M. Gutowski, J.E. Jaffe, C.C. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin, Appl. Phys. Lett. 80, 1897 (2002)

    Article  CAS  Google Scholar 

  12. H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, I.-H. Choi, Vacuum 80, 310 (2005)

    Article  CAS  Google Scholar 

  13. A. Callegari, E. Cartier, M. Gribelyuk, H.F. Okorn-Schmidt, T. Zabel, J. Appl. Phys. 90, 6466 (2001)

    Article  CAS  Google Scholar 

  14. L.-Z. Hsieh, H.-H. Ko, P.-Y. Kuei, C.-Y. Lee, Jap. J. Appl. Phys. 45, 7680 (2006)

    Article  CAS  Google Scholar 

  15. Y. Nagasato, A. Aya, Y. Iwazaki, M. Hasumi, Jap. J. Appl. Phys. 44, 5 (2005)

    Article  CAS  Google Scholar 

  16. F.D. Monte, W. Larsen, J.D. Mackenzie, J. Am. Ceram. Soc. 83, 628 (2000)

    Article  Google Scholar 

  17. W. Li, X. Liu, A. Huang, P.K. Chu, J. Appl. Phys. D 40, 2293 (2007)

    Article  CAS  Google Scholar 

  18. G.C. Schwartz, Characterization, in Handbook of semiconductor interconnection technology, ed. by G.C. Schwartz, K.V. Srikrishnam, A. Bross (Marcel Dekker, New York, 1998)

    Google Scholar 

  19. D. Shin, Z.-K. Liu, Scripta Mater. 57, 201 (2007)

    Article  CAS  Google Scholar 

  20. D.K. Schroder, Semiconductor material and device characterization, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

  21. K.Y. Cheong, W. Bahng, N.K. Kim, Appl. Phys. Lett. 90, 012120 (2007)

    Article  Google Scholar 

  22. P.G. Tanner, S. Dimitrijev, H.B. Harrison, Optoelectron. Microelectron. Mat. Dev. Proc. 21, 1–214 (2006)

    Google Scholar 

  23. M. Houssa, M. Naili, C. Zhao, H. Bender, M.M. Heyns, A. Stesmans, Semicond. Sci. Technol. 16, 31 (2001)

    Article  CAS  Google Scholar 

  24. C.Y. Ma, F. Lapostolle, P. Briois, Q.Y. Zhang, Appl. Surf. Sci. 253, 8718 (2007)

    Article  CAS  Google Scholar 

  25. J. Wang, L. Zhao, N.H. Luu, D. Wang, H. Nakashima, Appl. Phys. A Mat. Sci. Process. 80, 1781 (2005)

    Article  CAS  Google Scholar 

  26. A. Paskaleva, E. Atanassova, M. Lemberger, A.J. Bauer, Correlation between defects, leakage currents and conduction mechanism in advanced high-k dielectric layers, in Defects in High-k Gate Dielectric Stacks Nano-Electric Semiconductor Devices, ed. by E. Gusev (Springer, Dordrecht, 2006), pp. S.411–S.422

  27. X. Yang, Q. Xie, M. Tao, Mat. Res. Soc. Symp. Proc. 811, D2.8.1 (2004)

  28. J.C. Wang, K.C. Chiang, T.F. Lie, C.L. Lee, Electrochem. Solid-State Lett. 7, E55 (2004)

    Article  CAS  Google Scholar 

  29. L.Q. Zhu, Q. Fang, G. He, M. Liu, L.D. Zhang, J. Phys. D Appl. Phys. 39, 5285 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the AUN/SEED-Net Project (Grant No. 6050128) and eScienceFund (6013370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurniawan, T., Cheong, K.Y., Razak, K.A. et al. Oxidation of sputtered Zr thin film on Si substrate. J Mater Sci: Mater Electron 22, 143–150 (2011). https://doi.org/10.1007/s10854-010-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0103-1

Keywords

Navigation