Skip to main content
Log in

Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, varying weight percentages of Y2O3 particles (3–5 μm) from 0 to 3% were incorporated into eutectic Sn-Bi solder matrix to form composite solders. It is found that the reinforcement particles were well dispersed in the solder matrix. They depressed the growth of intermetallic compound (IMC) layers and reduced the size of IMC grains. Since the Y2O3 particles serve as additional nucleation sites for the formation of primary Bi-rich phase, the size of both Bi-rich phase and the IMCs were decreased gradually with the Y2O3 content increasing. Shear tests were also conducted on as—soldered joints. The growth of solid-state intermetallic compounds layer was examined by thermal aging of the solder/Cu couple for a temperature range from 60 to 120°C and time periods from 50 to 500 h. Compared with Sn-58Bi solder, finer eutectic microstructures were obtained with Y2O3 addition after long time aging. The apparent activation energies calculated for the growth of the intermetallic compound layers were 72 ± 5 kJ/mol of Sn-58Bi, 74 ± 4 kJ/mol of Sn-58Bi-0.5wt%Y2O3, 81 ± 5 kJ/mol of Sn-58Bi-1wt% Y2O3 and 81 ± 7 kJ/mol of Sn-58Bi-3wt.% Y2O3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.Q. Yu, J. Zhao, L. Wang, J. Alloy. Compd. 376, 170–175 (2004)

    Article  CAS  Google Scholar 

  2. N.M. Poon, C.M.L. Wu, J.K.L. Lai, Y.C. Chan, IEEE Trans. Adv. Packag. 23(4), 708 (2000)

    Article  CAS  Google Scholar 

  3. M.L. Huang, C.M.L. Wu, J.K.L. Lai, L. Wang, F.G. Wang, J. Mater. Sci. Mater. Electron. 11, 57 (2000)

    Article  CAS  Google Scholar 

  4. J. Shen, Y.C. Chen, Microelectron. Reliab. 49, 223–234 (2009)

    Article  CAS  Google Scholar 

  5. J.F. Li, S.H. Mannan, M.P. Clode et al., Acta Mater. 55, 737–752 (2007)

    Article  CAS  Google Scholar 

  6. W. Dong, Y. Shi et al., J. Electron. Mater. 37, 982–991 (2008)

    Article  CAS  ADS  Google Scholar 

  7. S.M.L. Nai, J. Wei, M. Gupta, J. Alloy. Compd. 473, 100–106 (2009)

    Article  CAS  Google Scholar 

  8. Z.X. Li, M. Gupta, Adv. Eng. Mater. 7, 1049–1054 (2005)

    Article  CAS  Google Scholar 

  9. P.L. Liu, J.K. Shang, J. Mater. Res. 16, 1651–1659 (2001)

    Article  CAS  ADS  Google Scholar 

  10. J. Glazer, Int. Mater. Rev. 40, 65 (1995)

    CAS  Google Scholar 

  11. D.M. Zhang, G.F. Ding, H. Wang, Z.H. Jiang, J.Y. Yao, J. Funct. Mater. Devices 12, 211–214 (2006)

    CAS  Google Scholar 

  12. F.A. Lindemann, über die Berechnung molekularer Eigenfrequenzen. Phys. Z 11, 609–612 (1910)

    CAS  Google Scholar 

  13. L.J. Lewis, P. Jensen, J.L. Barrat, Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B 56, 2248–2257 (1997)

    Article  CAS  ADS  Google Scholar 

  14. G.S. Frank, J. Mater. Res. 9, 1307–1313 (1994)

    Article  Google Scholar 

  15. B.Huang, N.C.Lee, in International symposium on Microelectronics Proceedings, vol. 3906, p. 711 (1999)

  16. S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401–404 (2006)

    Article  CAS  ADS  Google Scholar 

  17. J.L.F. Goldstein et al., J. Electron. Mater. 23, 477–486 (1994)

    Article  CAS  ADS  Google Scholar 

  18. D.Q. Yu, L. Wang, C.M.L. Wu et al., J. Alloy. Compd. 389, 153–158 (2005)

    Article  CAS  Google Scholar 

  19. H. Mavoori, S. Jin, J. Electron. Mater. 27, 1216–1222 (1998)

    Article  CAS  ADS  Google Scholar 

  20. P.T. Vianco, A.C. Kilgo, R. Grant, J. Electron. Mater. 24, 1493–1505 (1995)

    Article  CAS  ADS  Google Scholar 

  21. J.-W. Yoon, C.-B. Lee, S.-B. Jung, Mater. Trans. 43, 1821–1826 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Technologies R&D Program (2006BAE03B02-2), NSFC key program (U0734006), Key Laboratory Program in Liaoning Province (20060133). The authors would like to thank Prof. Lawrence Wu at City University of Hongkong for his cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Huang, M., Wu, C.M.L. et al. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder. J Mater Sci: Mater Electron 21, 1046–1054 (2010). https://doi.org/10.1007/s10854-009-0025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-0025-y

Keywords

Navigation