Skip to main content
Log in

A quantitative characterization of the optical absorption spectrum associated with hydrogenated amorphous silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We propose a quantitative means of characterizing the optical absorption spectrum associated with an amorphous semiconductor. In particular, for a representative hydrogenated amorphous silicon optical absorption experimental data set, through a series of least-squares linear fits of an exponential function to this experimental data set, taken over a number of optical absorption ranges, we determine how the breadth of the optical absorption tail varies along the optical absorption spectrum of hydrogenated amorphous silicon. We find that the quantitative variations in the breadth of the optical absorption tail that are found provide for a clear delineation between the different regions of the optical absorption spectrum of hydrogenated amorphous silicon. We complete this analysis by theoretically determining the form of the optical absorption spectrum using a recently developed empirical model for the density of states functions corresponding to hydrogenated amorphous silicon, this analysis providing a theoretical basis for the interpretation of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The experimental data in Fig. 1 corresponds to the standard glow discharge a-Si:H data set presented in Figure 5.2 of Remeš [27].

  2. It should be noted that the exact ranges of \(\alpha(\hbar\omega)\) corresponding to the three different regions of the optical absorption spectrum may differ somewhat from that suggested by Wood and Tauc [17].

  3. Similar parameter selections were also made by Mok and O’Leary [34].

  4. As defect states are neglected in the empirical DOS model, we do not expect to see defect absorption in our theoretical results.

References

  1. M. Zeman, R.A.C.M.M. van Swaaij, J.W. Metselaar, R.E.I. Schropp, J. Appl. Phys. 88, 6436 (2000)

    Article  ADS  CAS  Google Scholar 

  2. S.O. Kasap, J.A. Rowlands, Proc. IEEE 90, 591 (2002)

    Article  CAS  Google Scholar 

  3. K. Weiser, M.H. Brodsky, Phys. Rev. B 1, 791 (1970)

    Article  ADS  Google Scholar 

  4. M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632 (1970)

    Article  ADS  Google Scholar 

  5. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981)

    Article  ADS  CAS  Google Scholar 

  6. T. Datta, J.A. Woollam, Phys. Rev. B 39, 1953 (1989)

    Article  ADS  CAS  Google Scholar 

  7. D. Dasgupta, F. Demichelis, C.F. Pirri, A. Tagliaferro, Phys. Rev. B 43, 2131 (1991)

    Article  ADS  CAS  Google Scholar 

  8. K. Morigaki, Physics of Amorphous Semiconductors (Imperial College and World Scientific, Singapore, 1999)

    Google Scholar 

  9. S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57 (2001)

    Article  Google Scholar 

  10. B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429 (2001)

    Article  ADS  CAS  Google Scholar 

  11. J. Singh, Nonlinear Optic. Princ. Mater. Phenom. Dev. 29, 119 (2002)

    CAS  Google Scholar 

  12. D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271 (2002)

    Article  ADS  CAS  Google Scholar 

  13. J. Singh, K. Shimikawa, Advances in Amorphous Semiconductors (CRC Press, Boca Raton, 2003)

    Google Scholar 

  14. F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 84, 523 (2004)

    Article  ADS  CAS  Google Scholar 

  15. L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920 (2006)

    Article  ADS  Google Scholar 

  16. G.D. Cody, in Hydrogenated Amorphous Silicon, edited by J.I. Pankove, Semiconductors and Semimetals, vol. 21B (Academic, New York, 1984), p. 11

  17. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  ADS  Google Scholar 

  18. S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 51, 4143 (1995)

    Article  ADS  Google Scholar 

  19. S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 52, 7795 (1995)

    Article  ADS  Google Scholar 

  20. S.K. O’Leary, L.S. Sidhu, S. Zukotynski, J.M. Perz, Can. J. Phys. 74, S256 (1996)

    Google Scholar 

  21. S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)

    Article  ADS  Google Scholar 

  22. L. Jiao, I. Chen, R. W. Collins, C. R. Wronski, N. Hata, Appl. Phys. Lett. 72, 1057 (1998)

    Article  ADS  CAS  Google Scholar 

  23. S.K. O’Leary, S.M. Malik, J. Appl. Phys. 92, 4276 (2002)

    Article  ADS  Google Scholar 

  24. S.M. Malik, S.K. O’Leary, J. Non-Cryst. Solids 336, 64 (2004)

    Article  ADS  CAS  Google Scholar 

  25. S.K. O’Leary, J. Mater. Sci: Mater. Electron. 15, 401 (2004)

    Article  Google Scholar 

  26. S.M. Malik, S.K. O’Leary, Appl. Phys. Lett. 80, 790 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Z. Remeš, Ph.D. Thesis, Charles University, Prague, 1999

  28. C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985 (1983)

    Article  ADS  CAS  Google Scholar 

  29. S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Phys. Rev. Lett. 57, 1777 (1986)

    Article  PubMed  ADS  CAS  Google Scholar 

  30. G.D. Cody, J. Non-Cryst. Solids 141, 3 (1992)

    Article  ADS  CAS  Google Scholar 

  31. S.K. O’Leary, P.K. Lim, Appl. Phys. A 66, 53 (1998)

    Article  ADS  Google Scholar 

  32. W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, S.-J. Oh, Phys. Rev. B 31, 5187 (1985)

    Article  ADS  CAS  Google Scholar 

  33. S.K. O’Leary, Appl. Phys. Lett. 82, 2784 (2003)

    Article  ADS  Google Scholar 

  34. T.M. Mok, S.K. O’Leary, J. Appl. Phys. 102, 113525 (2007)

    Article  ADS  Google Scholar 

  35. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  36. J. Singh, J. Mater. Sci.: Mater. Electron. 14, 171 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support. The use of equipment loaned from the Canadian Microelectronics Corporation, and equipment granted from the Canada Foundation for Innovation, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orapunt, F., O’Leary, S.K. A quantitative characterization of the optical absorption spectrum associated with hydrogenated amorphous silicon. J Mater Sci: Mater Electron 20, 1033–1038 (2009). https://doi.org/10.1007/s10854-008-9825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9825-8

Keywords

Navigation