Skip to main content
Log in

SEM and specific contact resistance analysis of screen-printed Ag contacts formed by fire-through process on the shallow emitters of silicon solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SEM and specific contact resistance measurements of the Ag metal contact formed by applying a fire-through process on the shallow emitter region of the silicon solar cell have been investigated. The metal contact consists of screen-printed Ag paste patterned on the silicon nitride (Si3N4) deposited over the n+-Si emitter region of the solar cell. The sintering step consists of a rapid firing step at 800 °C or above in air ambient. This is followed by an annealing step at 450 °C in nitrogen ambient. It enables to drive the Ag metal paste onto the Si3N4 layer and facilitates the formation of an Ag metal/p-Si contact structure. It serves as the top metallization for the screen-printed silicon solar cell. The SEM measurement shows that sintering of the Ag metal paste at 800 °C or above causes the Ag metal to firmly coalesce with the underlying n+-Si surface. A thin layer of conductive glassy layer is also presents at the interface of the Ag metal and n+-Si surface. The electrical quality of the contact structure was characterized by measuring the specific contact resistance, ρ c (in Ω-cm2) using the iteration technique based on the power loss calculation for the solar cell. It shows that best value of ρ c  = 2.53 × 10−5 Ω-cm2 is estimated for the Ag metal contact sintered at temperature above 800 °C. This value of ρ c is two orders of magnitude lower than the typical value of ρ c  = 3 × 10−3 Ω-cm2 reported previously for the Ag contacts of the solar cell. Such low value of ρ c for the Ag metal contacts indicates that fire-through process results in excellent ohmic properties. The plot of the ρ c versus impurity doping level (N s ) shows that measured value of the ρ c follows a linear relationship with the N s as predicted by the theory for the heavily doped semiconductor surface. Hence, carrier injection across the Schottky barrier height is quite appropriate to explain the observed ohmic properties of the Ag metal contacts on the n+-Si surface of the silicon solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The high conductivity paths through the p–n junction are caused by excessive metal penetration due to the limited solubility of Ag in Si [10].

  2. The total resistance measured consists of the resistance of interfacial resistance, the resistance of the diffused layer and the resistance of the metal layer of the contact metal.

References

  1. M.M. Hilali, A. Rohatgi, S. Asher, IEEE Trans. Electron. Dev. ED-51(6), 948–956 (2004). doi:10.1109/TED.2004.828280

    Article  ADS  Google Scholar 

  2. P.N. Vinod, J. Mater Sci. Mater. Electron. 18, 805–810 (2007). doi:10.1007/s10854-007-9210-z

    Article  CAS  Google Scholar 

  3. D.K. Schroder, D.L. Meier, IEEE Trans. Electron. Dev. 31, 637–647 (1984). doi:10.1109/T-ED.1984.21583

    Article  ADS  Google Scholar 

  4. G. Schubert, J. Horzel, F. Huster, P. Fath, Proceedings of 20th European Council Photovoltaic Solar Energy Conference (EC PVSEC), Barcelona, Spain, June 2005, pp. 934–938

  5. G. Schubert, F. Huster, P. Fath, Sol. Energy Mater. Sol. Cells. 90, 3399–3406 (2006). doi:10.1016/j.solmat.2006.03.040

    Article  CAS  Google Scholar 

  6. M.M. Hilali, M. Al-Jassim, B. To, H. Mountinho, A. Rohatgi, S. Asher, J. Electrochem. Soc. 152(10), G742–G749 (2005). doi:10.1149/1.2001507

    Article  CAS  Google Scholar 

  7. C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878–1880 (2003). doi:10.1063/1.1562338

    Article  ADS  CAS  Google Scholar 

  8. B. Thuillier, J.P. Boyeaux, A. Kaminski, A. Laugier, Mater. Sci. Eng. B B102, 58–62 (2003). doi:10.1016/S0921-5107(02)00627-X

    Article  CAS  Google Scholar 

  9. E.A. Addo, S.J. Shah, R. Opila, A.M. Barnett, K. Allison, O.V. Sulima, J. Mater. Res. 19(4), 986–995 (2004). doi:10.1557/JMR.2004.0129

    Article  ADS  CAS  Google Scholar 

  10. D.L. Meier, H.P. Davis, R.A. Garcia, J.A. Jessup, A.F. Carroll, Proceedings of 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 69–74

  11. R. Preu, E. Schneiderlochner, A. Grohe, C. Ballif, S.W. Glunz, R. Preu, G. Willeke, Proceedings of 29th IEEE Photovoltaic Specialists Conference (PVSC), May 2002, pp. 300–303

  12. E. Schneiderlochner, A. Grohe, C. Ballif, S.W. Glunz, R. Preu, G. Willeke, Proceedings of 29th IEEE Photovoltaic Specialists Conference (PVSC), May 2002, pp. 300–303

  13. P.N. Vinod, Semicond. Sci. Technol. 20, 966–971 (2005). doi:10.1088/0268-1242/20/9/014

    Article  ADS  CAS  Google Scholar 

  14. J. Szlufcik, S. Sivoththaman, J.F. Nijs, R.P. Mertens, R. van Overstreaten, Proc. IEEE 85(5), 711–730 (1997). doi:10.1109/5.588971

    Article  CAS  Google Scholar 

  15. S. Peters, J.Y. Lee, C. Ballif, D. Borchet, S.W. Glunz, W. Warta, W. Willeke, Proceedings of 29th IEEE Photovoltaic Specialists Conference (PVSC), 2002, pp. 214–217

  16. R. Olesinski, A. Gokhale, G. Abbaschian, Bull. Alloy Phase Diagr. 10, 635–640 (1989). doi:10.1007/BF02877631

    Article  CAS  Google Scholar 

  17. W. Kern, D.A. Puotinen, RCA Rev. 31, 187–196 (1970)

    CAS  Google Scholar 

  18. P.K. Basu, S.K. Dhungel, K. Kim, K. Chakravarty, J. Yi, J. Korean, Phys. Soc. 46(5), 1237–1242 (2005)

    CAS  Google Scholar 

  19. P.N. Vinod, Ph.D Dissertation, University of Delhi, February 2003

  20. P.N. Vinod, J. Mater. Sci. Mater. Electron. 19, 594–601 (2008). doi:10.1007/s10854-007-9395-1

    Article  CAS  Google Scholar 

  21. Y.S. Chung, H.G. Kim, IEEE Trans. Components. Hybrids Manuf. Technol. 11(2), 195–199 (1988)

    Article  CAS  MathSciNet  Google Scholar 

  22. T. Nakajima, A. Kawakami, A. Tada, Int. J. Hybrid Microelectron. 6(1), 580–586 (1983)

    CAS  Google Scholar 

  23. D.R. Reimer, Proceedings of 13th IEEE Photovoltaic Specialists Conference (PVSC), 1978, pp. 603–613

  24. S.P. Murarka, Silicides for VLSI Applications (Academic Press, NY, 1983)

    Google Scholar 

  25. J.D. Plummer, P.B. Griffin, Proc. IEEE 89(3), 240–258 (2001). doi:10.1109/5.915373

    Article  CAS  Google Scholar 

  26. S. Kontermann, G. Emmanuel, J. Benick, R. Preu, G. Willeke, Proceedings of 21st European Council Photovoltaic Solar Energy Conference, Dresden, Germany, 2006

  27. S.M. Sze, Physics of the semiconductor device (Wiley, NY, 1982)

    Google Scholar 

  28. H.H. Berger, J. Electrochem. Soc. 119, 507–514 (1972). doi:10.1149/1.2404240

  29. H.H. Berger, Solid State Electron. 15, 145–158 (1972)

  30. G.K. Reeves, H.B. Harrison, IEEE Trans. Electron. Dev. Lett. EDL 3, 111–113 (1982)

    Article  Google Scholar 

  31. S.J. Proctor, L.W. Lindholm, IEEE Trans. Electron. Dev. Lett. EDL-3, 294–296 (1982). doi:10.1109/EDL.1982.25574

  32. C.Y. Chang, Y.K. Feng, S.M. Sze, Solid-State Electron. 14, 541–554 (1971). doi:10.1016/0038-1101(71)90129-8

    Article  ADS  CAS  Google Scholar 

  33. C.M. Osborn, K.B. Bellur, Thin Solid Films 332, 428–436 (1998). doi:10.1016/S0040-6090(98)01046-3

    Article  ADS  Google Scholar 

  34. A.C.Y. Yu, Solid State Electron. 13, 239–245 (1970)

  35. F.A. Podovani, R. Stratton, Solid State Electron. 9, 965–976 (1966)

    Google Scholar 

  36. D.L. Meier, H.P. Davis, A. Shitibe, T. Abe, K. Kinoshita, Proceedings of 2nd World Conference on Photovolt Energy Conversion, Vienna, Austria, 1998, pp. 1491–1494

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vinod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinod, P.N. SEM and specific contact resistance analysis of screen-printed Ag contacts formed by fire-through process on the shallow emitters of silicon solar cell. J Mater Sci: Mater Electron 20, 1026–1032 (2009). https://doi.org/10.1007/s10854-008-9815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9815-x

Keywords

Navigation