Skip to main content
Log in

Electrodeposition of tin: a simple approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electroplating of tin from acidic plating solutions has been studied for more than one hundred years. The plating solutions contain various additives in addition to stannous ions, which make them complicated and difficult to control. In this work, a simple tin plating solution has been developed. The slightly acidic electrolyte contains only two components: tin (II) chloride and tri-ammonium citrate. It is environmentally benign, easy to prepare, easy to control and electrodeposition can be done at room temperature. Plating rates in excess of 20 μm/h at a current density of 10 mA/cm2 are attainable from solutions with 0.31–0.41 mol/L (75–100 g/L) of tri-ammonium citrate and 0.22 mol/L (50 g/L) of SnCl2·2H2O. The resultant deposits are dense with smooth morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. Gray, (ed.), in Modern Electroplating (John Willy & Sons, Inc., New York, 1953) p. 387

  2. J.W. Cuthberton, in Tin and Its Alloys, Chapter V, ed by E.S. Hedges (Edward Arnold Ltd, London, 1960) p. 99

  3. F.A. Lowenheim (ed.), in Electroplating (McGraw-Hill Book Company, New York, 1978) p. 307

  4. J. I. Duffy (ed)., in Eelectroplating Technology-Recent Developments (Noyes Data Corporartion, Park Ridge, New Jersey, 1981) p. 92

  5. J.W. Price, in Tin and Tin Alloy Plating (Electrochemical Publications Ltd., Ayr, Scotland, 1983) p. 5

  6. A. Betts, US Patent, 712277 (1902)

  7. H. L. Hollis, US Patent, 916155 (1909)

  8. F.C. Mathers, US Patent, 1397222 (1921)

  9. A.H. Alexander, J.R. Stack, Trans Am Inst Mining and Met Eng 70, 404 (1924)

    Google Scholar 

  10. M. Schloetter, British Patent, 329308 (1929)

  11. M. Schloetter, British Patent, 443429 (1936)

  12. C.A. Disher, F.C. Mathers, J. Electrochem. Soc. 102, 387 (1955)

    Article  Google Scholar 

  13. A.M. Harper, A. Mohan, S.C. Britton, Trans. Inst. Metal finish. 34, 237 (1957)

    Google Scholar 

  14. M.E. Roper, Metal Finish. J. 12, 255 (1966)

    Google Scholar 

  15. H.K. Wren, W.T. Hobson, Metal Finish. 67, 52 (1969)

    CAS  Google Scholar 

  16. J.L. Parker, Electroplat. And Metal Finish. 23, 19 (1970)

    Google Scholar 

  17. H. nawafune, in Leed- free Soldering in Electronics: Science, Technology and Environmental Impact, Chapter 4, ed by K. Suganuma (Marcel Dekker Inc., New York, Basel, 2004) p. 91

  18. K. Whitelaw, J. Crosby, M. Toben, Circuit World 32, 23 (2006)

    Article  Google Scholar 

  19. J.C. Puippe, W. Fluehmann, Plat. Surf. Finish. 70, 46 (1983)

    CAS  Google Scholar 

  20. O. Khaselev, I.S. Zavarine, A .Vysotskaya, C. Fan, Y. Zhang, J. Abys, Trans. Inst. Met. Finish. 80 (2002)

  21. E. Guaus, J. Torrent-Burgues, J. Electroanal. Chem. 549, 25 (2003)

    Article  CAS  Google Scholar 

  22. M. Fukuda, K. Imayoshi, Y. Matsumoto, J. Electrochem. Soc. 149, C244 (2002)

    Article  CAS  Google Scholar 

  23. B. Kim T. Ritzdorf, J. Electrochem. Soc. 150, C53 (2003)

    Article  Google Scholar 

  24. T.M. Korhonen, J.K. Kivilahti, J. Electron. Mater. 27, 149 (1998)

    Article  CAS  Google Scholar 

  25. B. Neveu , F. Lallemand, G. Poupon, Z. Mekhalif, Appl. Surf. Sci. 252, 3561 (2006)

    Article  CAS  Google Scholar 

  26. RHS Directive, EC Directive on Restriction of Hazardous Materials (2003)

  27. WEEE Directive, EC Directive on Waste Electrical and Electronic Equipment (2003)

  28. A. He, Q. Liu, D.G. Ivey, J Mater Sci: Mater In Electron 17, 63 (2006)

    Article  CAS  Google Scholar 

  29. P DF#1-086-2265, Jade 7-XRD Pattern Processing Identification and Quantification, 2005, (see also JCPDS File # 04-0673, in X-Ray Powder Data File Sets 1-5 (revised), Inorganic, published by the American Society for Testing Materials, Philadelphia, 1960) p. 546

  30. A. Survila, Z. Mockus, S. Knapeckaite, Electrochim. Acta 46, 571 (2000)

    Article  CAS  Google Scholar 

  31. A. R. Willey, Br. Corros. J. 7, 29 (1972)

    CAS  Google Scholar 

  32. J.C. Sherlock, S.C. Briton, Br. Corros. J. 7, 180 (1972)

    CAS  Google Scholar 

  33. R.G.P. Elbourne, G.S. Buchanan, J. Inorg. Nucl. Chem. 32, 3559 (1970)

    Article  CAS  Google Scholar 

  34. R.G.P. Elbourne, G.S. Buchanan, J. Inorg. Nucl. Chem. 32, 493 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing research funding and Micralyne for providing metallized Si wafers for electrodeposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, A., Liu, Q. & Ivey, D.G. Electrodeposition of tin: a simple approach. J Mater Sci: Mater Electron 19, 553–562 (2008). https://doi.org/10.1007/s10854-007-9385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9385-3

Keywords

Navigation