Skip to main content
Log in

Doping of phthalocyanine films: structural reorganization versus acceptor effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It has been demonstrated that doping of phthalocyanine (Pc) films by co-sublimation with organic acceptor p-chloranil (CA) initiates alterations in their crystalline structure, depending on the type of Pc molecule. In itself this factor may inhibit or promote the effect of dopant on the specific conductivity of the particular Pc associated with formation of the charge transfer complex between Pc and CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Finely polished crystalline ceramic material, Russian analog of Zerodur®, with ultra low thermal expansion and conductance, used here as dielectric substrates for electrical measurements, after lithography.

  2. The findings described herein are valid for the concentration range from 10:1 to 5:1 (Pc:CA molecular ratio). The dopant distributes not homogeneously, but most likely concentrates at the grain boundaries (see, supplementary info). This is the reason why we did not observe more characteristic changes in UV/Vis spectra or distortions of Pc lattice in XRD spectra. Further increase in the CA content leads to segregation of phases in sublimed films and degradation of their properties. Detailed results on various dopant-to-matrix ratios and photovoltaic effects will be published elsewhere.

References

  1. T. Inabe, H. Tajime, Chem. Rev. 104, 5503 (2004)

    Article  CAS  Google Scholar 

  2. E. Van Faassen, D. Schlettwein in Handbook of Photochemistry and Photobiology, vol .3(ASP, New York, 2003), p. 355

  3. R.M. Metzger, Chem. Rev. 103, 3803 (2003)

    Article  CAS  Google Scholar 

  4. W.-X. Chen, Z.D. Xu, W.-Z. Li, J. Photochem. Photobiol. A 88, 179 (1995); C. Panneman, V. Dyakonov, J. Parisi, O. Hild, D. Woehrle, Synth. Met. 121, 1585 (2001); T. Toccoli, A. Boschetti, C. Corradi, L. Guerini, M. Mazzola, S. Iannotta, Synth. Met. 138, 3 (2003); G. Ruani, C. Fontanini, M. Murgia, C. Taliani, J. Chem. Phys. 116, 1713 (2002); E.G. Bortchagovsky, Z.I. Kazantseva , I.A. Koshets , S. Nespurek, L. Jastrabik, Thin Solid Films. 460, 269 (2004)

  5. Rudiono, M. Takeuchi, Jap. J. Appl. Phys. Pt.2 36, L127 (1997); D.R. Kearns, G. Tollin, M. Calvin, J. Chem. Phys. 32, 1020 (1960); K. Kamimura, J. Muto, K. Akiyama, J. Mater. Sci. Mater. Electron. 2, 244 (1991)

  6. T.M. Mohan Kumar, B.N. Achar, J. Phys. Chem. Sol. 67, 2282 (2006)

    Article  CAS  Google Scholar 

  7. J. Simon, J.-J. Andre, in Molecular semiconductors (Springer-Verlag, Berlin/Heidelberg, 1985), p. 182

  8. S. Tabuchi, H. Tabata, T. Kawai, Surf. Sci. 571, 117 (2004); J.C. Hsieh, C.J. Liu, Y.H. Ju, Thin Solid Films. 322, 98–103 (1998); C. Hamann, A. Mrwa, M. Muller, Sens. Actuat. B 4, 73 (1991); A. Miyamoto, K. Nichogi, A. Taomoto, T. Nambu, M. Murakami, Thin Solid Films 256, 64 (1995); A. Wilson, G. Rigby, J.D. Wright, S. Thorpe, T. Terui, Y. Maruyama, J. Mater. Chem. 2, 303 (1992)

  9. A.K. Ray, S.M. Tracey, A.K. Hassan, Iee Proc. Sci. Measur. Technol. 146, 205 (1999)

    Article  CAS  Google Scholar 

  10. A.T. Oza, S.G. Patel, R.G. Patel, S.M. Prajapati, R. Vaidya, Thin Solid Films 447, 153 (2005)

    Article  Google Scholar 

  11. A.YU. Vakhnin, YA.I. Vertsimakha, V.I. Trofimov, L.I. Tsirkova, Ukrainskii Fizicheskii Zhurnal 38, 204 (1993)

    Google Scholar 

  12. A. Ahmad, R.A. Collins, J. Phys. D: Appl. Phys. 24, 1894 (1991); R.A. Collins, A.K. Abass, A. Krier, Thin Solid Films 239, 268 (1994)

    Google Scholar 

  13. R. Kubiak, J. Janczak, K. Ejsmont, Chem. Phys. Lett. 245, 249 (1995); S.M. Bayliss, S. Heutz, G. Rumbles, T.S. Jones, Phys. Chem. Chem. Phys. 1, 3673 (1999)

  14. M.K. Engel, Rep. Kawamura Inst. Chem. Res. /Kawamura Rikagaku Kenkyusho Hokoku / 1997 (1996) 11

  15. G.L. Pakhomov, YU.N. Drozdov, Cryst. Eng. 6, 23 (2003)

    Article  CAS  Google Scholar 

  16. S.A. Zavyalov, A.N. Pivkina, J. Schoonman, Solid State Ionics 147, 415 (2002)

    Article  CAS  Google Scholar 

  17. B. Chakraborty, A. Mukkerjee, B. Seal, Spectrochim. Acta A 57, 223 (2001); J.B. Torrance, A. Girlando, J.J. Mayerle, J.I. Crowley, V.Y. Lee, P. Batail, S.J. LaPlaca, Phys. Rev. Lett. 47, 1747 (1981); S.M. Teleb, M.S. Refat, Spectrochim. Acta A 60, 1579 (2004)

  18. G.L. Pakhomov, G.P. Shaposhnikov, V.N. Spektor, L.G. Pakhomov, J.M. Ribo, Russ. Chem. Bull. 45, 228 (1996)

    Article  Google Scholar 

  19. G.L. Pakhomov, Solid State Comm. 134, 491 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. S.Zavyalov (NIFHI) for preparation of Pc/PPX samples and Dr. Yu.N. Drozdov (IPM RAS) for XRD measurements. This work was partly supported by RFBR (03-02-17407) and PRAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgy L. Pakhomov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhomov, G.L., Kosterin, D.A., Pakhomov, L.G. et al. Doping of phthalocyanine films: structural reorganization versus acceptor effect. J Mater Sci: Mater Electron 19, 500–504 (2008). https://doi.org/10.1007/s10854-007-9370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9370-x

Keywords

Navigation