Skip to main content
Log in

Modeling vacancy injection from the silicon/silicon-nitride interface

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vacancy injection is known to occur from the silicon/silicon-nitride interface under conditions of thermal nitridation and during anneal in inert or oxidizing ambients in the presence of a pre-deposited silicon nitride film. We present a semi-empirical model for the injection flux. We suggest that there are two components to the injection: a rapidly decaying component that is proportional to the growth rate of the nitride film and a slowly decaying component that continues after the film thickness has saturated. Both fluxes involve diffusion of the silicon cation into the nitride film but silicon diffusion is the rate limiting step only in the case of the second component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that in the actual paper Hayafuji et al. have an error of a factor of 2 in the calculations on p. 2107 of Ref. [15] so that their numbers would yield an apparent activation energy of 2.06 eV.

References

  1. J.M. Bonar, B.M. McGregor, A.F.W. Willoughby, A.D.N. Paine, in Phys. and Tech. of Dopant-Defect Interactions Symp., ed. By H.-J.L. Gossmann, T.E. Haynes, M.E. Law, A.N. Larsen, S. Odanaka (Mater. Res. Soc., Warrendale, PA, 1999), p. 103

  2. J.M. Bonar, A.F.W. Willoughby, A.H. Dan, B.M. Mcgregor, W. Lerch, D. Loeffelmacher, G.A. Cooke, M.G. Dowsett, J. Mater. Sci: Mater. Elec. 12, 219 (2001)

    Article  CAS  Google Scholar 

  3. A.H. Dan, A.F.W. Willoughby, J.M. Bonar, B.M. Mcgregor, in Seventh Postgraduate Conference in Engineering Materials (University of Southampton, 2001), p. 17

  4. P.M. Fahey, G. Barbuscia, M. Moslehi, R.W. Dutton, Appl. Phys. Lett. 46, 784 (1985)

    Article  CAS  Google Scholar 

  5. P.M. Fahey, R.W. Dutton, M. Moslehi, Appl. Phys. Lett. 43, 683 (1983)

    Article  CAS  Google Scholar 

  6. P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61, 289 (1989)

    Article  CAS  Google Scholar 

  7. Y. Hayafuji, Y. Kajiwara, S. Usui, J. Appl. Phys. 53, 8639 (1982)

    Article  CAS  Google Scholar 

  8. S. Mizuo, H. Higuchi, Jpn. J. Appl. Phys. 21, 281 (1982)

    Article  CAS  Google Scholar 

  9. S. Mizuo, T. Kusaka, A. Shintani, M. Nanba, H. Higuchi, J. Appl. Phys. 54, 3860 (1983)

    Article  CAS  Google Scholar 

  10. M.S.A. Karunaratne, A.F.W. Willoughby, J.M. Bonar, J. Zhang, P. Ashburn, J. Appl. Phys. 97, 113531 (2005)

    Article  Google Scholar 

  11. M. Hasanuzzaman and Y. Haddara, In Progress

  12. M. Griglione, J. Anderson, Y.M. Haddara, M.E. Law, K.S. Jones, A. van den Bogaard, J. Appl. Phys. 88, 1366 (2000)

    Article  CAS  Google Scholar 

  13. M. Griglione, T.J. Anderson, M.E. Law, K.S. Jones, A. van den Bogaard, M.P.-L. Margarida, J. Appl. Phys. 89, 2904 (2001)

    Article  CAS  Google Scholar 

  14. M.D. Griglione, T.J. Anderson, Y. Haddara, M.E. Law, K.S. Jones, in Silicon Front End Technology––Materials Processing and Modeling Symposium, ed. by N.E.B. Cowern, D. Jacobson, P. Griffin, P. Packan, R. Webb (Mater. Res. Soc., Warrendale, PA, 1998) p. 119

  15. Y. Hayafuji, K. Kajiwara, J. Electrochem. Soc. 129, 2102 (1982)

    Article  CAS  Google Scholar 

  16. T. Ito, S. Hijiya, T. Nozaki, H. Arakawa, M. Shinoda, Y. Fukukawa, J. Electrochem. Soc. 125, 448 (1978)

    Article  CAS  Google Scholar 

  17. S.P. Murarka, C.C. Chang, A.C. Adams, J. Electrochem. Soc. 126, 996 (1979)

    Article  CAS  Google Scholar 

  18. M.M. Moslehi, K.C. Saraswat, IEEE Trans. Elec. Dev. ED-32, 106 (1985)

    Article  CAS  Google Scholar 

  19. T.K. Mogi, M.O. Thompson, H.-J. Gossmann, J.M. Poate, H.S. Luftman, Appl. Phys. Lett. 69, 1273 (1996)

    Article  CAS  Google Scholar 

  20. FLOOPS Manual (University of Florida)

  21. FLOOPS-ISE Manual (Release 9.5, ISE Integrated Systems Engineering)

  22. Z.R. Jovanovic, J. Mat. Sci. Lett. 14, 1263 (1995)

    Article  CAS  Google Scholar 

  23. A.J. Moulson, J. Mat. Sci. 14, 1017 (1979)

    Article  CAS  Google Scholar 

  24. V.L. Novikov, V.G. Abbakumov, L.V. Miroshnichenko, S.I. Romanov, Refract. Ind. Ceram. 34, 26 (1993)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of ISE, now part of Synopsys, Inc. in providing software and technical support for FLOOPS-ISE. This work was partly funded by a grant from the Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser M. Haddara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasanuzzaman, M., Haddara, Y.M. Modeling vacancy injection from the silicon/silicon-nitride interface. J Mater Sci: Mater Electron 19, 323–326 (2008). https://doi.org/10.1007/s10854-007-9321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9321-6

Keywords

Navigation