Skip to main content
Log in

Stress analysis of spontaneous Sn whisker growth

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spontaneous Sn whisker growth is a surface relief phenomenon of creep, driven by a compressive stress gradient. No externally applied stress is required for the growth, and the compressive stress is generated within, from the chemical reaction between Sn and Cu to form the intermetallic compound Cu6Sn5 at room temperature. To obtain the compressive stress gradient, a break of the protective oxide on the Sn surface is required because the free surface of the break is stress-free. Thus, spontaneous Sn whisker growth is unique that stress relaxation accompanies stress generation. One of the whisker challenging issues in understanding and in finding effective methods to prevent spontaneous Sn whisker growth is to develop accelerated tests of whisker growth. Use of electromigration on short Sn stripes can facilitate this. The stress distribution around the vicinity and the root of a whisker can be obtained by using the micro-beam X-ray diffraction utilizing synchrotron radiation. A discussion of how to prevent spontaneous Sn whisker growth by blocking both stress generation and stress relaxation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Herring, J.K. Galt, Phys. Rev. 85, 1060 (1952)

    Article  Google Scholar 

  2. G.W. Sears, Acta Metall 3, 367 (1955)

    Article  CAS  Google Scholar 

  3. A.P. Levitt, in Whisker Technology (Wiley-Interscience, New York, 1970).

  4. U. Lindborg, Metall. Trans. 6A(8), 1581 (1975)

  5. T. Nagai, K. Natori, T. Furusawa, J. Jpn. Inst. Met. 53, 303 (1989)

    CAS  Google Scholar 

  6. I.A. Blech, P.M. Petroff, K.L. Tai, V. Kumar, J. Cryst. Growth 32(2), 161 (1975)

    Article  Google Scholar 

  7. N. Furuta, K. Hamamura, Jpn. J. Appl. Phys. 8(12), 1404 (1969)

    Article  CAS  Google Scholar 

  8. J.D. Eshelby, Phys. Rev. 91, 755 (1953)

    Article  Google Scholar 

  9. F.C. Frank, Phil. Mag. 44, 854 (1953)

    CAS  Google Scholar 

  10. S. Amelinckx, W. Bontinck, W. Dekeyser, F. Seitz, Phil. Mag. 2, 355 (1957)

    CAS  Google Scholar 

  11. W.C. Ellis, D.F. Gibbons, R.C. Treuting, in Growth and Perfection of Crystals, eds. by R.H. Doremus, B.W. Roberts, D. Turnbull (John Wiley, New York, 1958), pp. 102.

  12. R. Kawanaka, K. Fujiwara, S. Nango, T. Hasegawa, Jpn. J. Appl. Phys. Part I 22(6), 917 (1983)

    Article  CAS  Google Scholar 

  13. U. Lindborg, Acta Metall. 24(2), 181 (1976)

    Article  CAS  Google Scholar 

  14. K.N. Tu, Acta Metall. 21(4), 347 (1973)

    Article  CAS  Google Scholar 

  15. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams, G.R. Stafford, Acta Materialia 53, 5033 (2005)

    Article  CAS  Google Scholar 

  16. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, L. Nguyen, J. Appl. Phys. 92, 64 (2002)

    Article  CAS  Google Scholar 

  17. W. J. Choi, G. Galyon, K.N. Tu, T.Y. Lee, in Handbook of Lead-free Solder Technology for Microelectronic Assemblies, eds. by K.J. Puttlitz, K.A. Stalter (Marcel Dekker, New York, 2004).

  18. Ivan Amato, Fortune magazine 151(1), 27 (2005)

  19. Rob Spiegel, Electronic News 03/17/2005

  20. http://www.nemi.org/projects/ese/tin_whisker.html

  21. K.N. Tu, R.D. Thompson, Acta Met. 30, 947 (1982)

    Article  CAS  Google Scholar 

  22. K.N. Tu, Phys. Rev. B49, 2030 (1994)

    Google Scholar 

  23. P.G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963)

    Google Scholar 

  24. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, London, 1992)

    Google Scholar 

  25. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508-1 (2005)

    Google Scholar 

  26. B.-Z. Lee, D.N. Lee, 46(10), 3701 (1998)

    Google Scholar 

  27. C.Y. Chang, R.W. Vook, Thin Solid Films 228, 205 (1993)

    Article  CAS  Google Scholar 

  28. W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, L. Nguyen, Acta Mat. 51, 6253 (2003)

    Article  CAS  Google Scholar 

  29. K.N. Tu, Phys. Rev. B49, 2030 (1994)

    Google Scholar 

  30. R.M. Fisher, L.S. Darken, K.G. Carroll, Acta Metallurgica 2, 368 (1954)

    Article  CAS  Google Scholar 

  31. V.K. Glazunova, N.T. Kudryavtsev, Translated from Zhurnal Prikladnoi Khimii, 36(3), 543 (March 1963)

    Google Scholar 

  32. S.M. Arnold, Proc. 43rd Annual Convention of the American Electroplater’s Soc., vol. 43, (1956), pp. 26–31

  33. S.H. Liu, Chih Chen, P.C. Liu, T. Chou, J. Appl. Phys. 95(12), 7742 (2004)

    Google Scholar 

  34. I.A. Blech, J. Appl. Phys. 47, 1203 (1976)

    Article  CAS  Google Scholar 

  35. George T. Galyon, Annotated Tin Whisker Bibliography

  36. A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004)

    Article  CAS  Google Scholar 

  37. A.T. Wu, A.M. Gusak, K.N. Tu, C.R. Kao, Appl. Phys. Lett. 86, 241902 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, K.N., Chen, C. & Wu, A.T. Stress analysis of spontaneous Sn whisker growth. J Mater Sci: Mater Electron 18, 269–281 (2007). https://doi.org/10.1007/s10854-006-9029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9029-z

Keywords

Navigation