Skip to main content
Log in

Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NASA. Multiple examples of whisker-induced failures are documented on the NASA website. http://nepp.nasa. gov/whisker/

  2. S.M. Arnold, Plating 53, 96 (1966).

    Google Scholar 

  3. K.J. Puttlitz and G.T. Galyon, J. Mater. Sci.: Mater. Electron. 18, 347 (2007).

    Google Scholar 

  4. B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).

    Article  Google Scholar 

  5. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  Google Scholar 

  6. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  7. J. Smetana, IEEE Trans. Electron. Pack. Manuf. 30, 11 (2007).

    Article  Google Scholar 

  8. K.N. Tu, Phys. Rev. B 49, 2030 (1994).

    Article  Google Scholar 

  9. K. Suganuma, A. Baated, K.S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, Acta Mater. 59, 7255 (2011).

    Article  Google Scholar 

  10. F. Pei, A.F. Bower, and E. Chason, J. Electron. Mater. 45, 21 (2015).

    Article  Google Scholar 

  11. Y. Wang, J.E. Blendell, and C.A. Handwerker, J. Mater. Sci. 49, 1099 (2014).

    Article  Google Scholar 

  12. S.K. Lin, Y. Yorikado, J.X. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, J. Electron. Mater. 36, 1732 (2007).

    Article  Google Scholar 

  13. R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).

    Article  Google Scholar 

  14. G.T. Galyon, IEEE Trans. Electron. Pack. Manuf. 28, 94 (2005).

    Article  Google Scholar 

  15. E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).

    Article  Google Scholar 

  16. F. Pei and E. Chason, J. Electron. Mater. 43, 80 (2013).

    Article  Google Scholar 

  17. E. Chason and F. Pei, JOM 67, 2416 (2015).

    Article  Google Scholar 

  18. E. Chason and P.R. Guduru, J. Appl. Phys. 119, 191101 (2016).

    Article  Google Scholar 

  19. L.B. Freund and S. Suresh, Thin Film Materials (Cambridge: Cambridge University Press, 2003).

    Google Scholar 

  20. F. Pei, C.L. Briant, H. Kesari, A.F. Bower, and E. Chason, Scr. Mater. 93, 16 (2014).

    Article  Google Scholar 

  21. J. Weertman and J.E. Breen, J. Appl. Phys. 27, 1189 (1956).

    Article  Google Scholar 

  22. J.W. Shin and E. Chason, J. Mater. Res. 24, 1522 (2011).

    Article  Google Scholar 

  23. F. Pei, E. Buchovecky, A. Bower, and E. Chason, Acta Mater. 129, 462 (2017).

    Article  Google Scholar 

  24. E. Chason, F. Pei, C.L. Briant, H. Kesari, and A.F. Bower, J. Electron. Mater. 43, 4435 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chason, E., Vasquez, J., Pei, F. et al. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics. J. Electron. Mater. 47, 103–109 (2018). https://doi.org/10.1007/s11664-017-5802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5802-4

Keywords

Navigation