Skip to main content
Log in

Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mechanical properties of Sn-rich solder alloys are directly related to their heterogeneous microstructure. Thus, numerical modeling of the properties of these alloys is most effective when the microstructure is explicitly incorporated into the model. In this review, we provide several examples where 2D and 3D microstructures have been used to model the material behavior using finite element modeling. These included (a) 3D visualization of the solder microstructure, (b) 3D microstructure-based modeling of tensile behavior, (c) 2D modeling of the effect of intermetallic volume fraction and morphology on shear behavior of solder joints, and (d) prediction of crack growth in solder joints. In all these cases, the experimentally observed behavior matches very well with the microstructure-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Kang, A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994)

    CAS  Google Scholar 

  2. D.R. Frear, P.T. Vianco, Metall. Mater. Trans. A 25, 1509 (1994)

    Google Scholar 

  3. J. Glazer, Inter. Mater. Rev. 40, 65 (1995)

    CAS  Google Scholar 

  4. W.J. Plumbridge, C.R. Gagg, Proc. Inst. Mech. Engrs. L, J. Mater.: Des Appl. 214, 153 (2000)

    Google Scholar 

  5. M. Kerr, N. Chawla, Acta Mater. 52, 4527 (2004)

    Article  CAS  Google Scholar 

  6. F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414 (2003)

    CAS  Google Scholar 

  7. F. Ochoa, J.J. Williams, N. Chawla, JOM 55, 56 (2003)

    CAS  Google Scholar 

  8. R.J. McCabe, M.E. Fine, Scripta Mater. 39, 189 (1998)

    Article  CAS  Google Scholar 

  9. H. Rhee, J.P. Lucas, K.N. Subramanian, J. Mater. Sci. 13, 477 (2002)

    Article  CAS  Google Scholar 

  10. C. Basaran, J. Jiang, Mech. Mater. 34, 349 (2002)

    Article  Google Scholar 

  11. N. Chawla, F. Ochoa, S. Scaritt, M. Koopman, K.K. Chawla, V.V. Ganesh, X. Deng, J. Mater. Sci.: Mater. Electron. 15, 385 (2004)

    Article  CAS  Google Scholar 

  12. N. Ramakrishna, V.S. Arunachalam, J. Am. Ceram. Soc. 76, 2745 (1993)

    Article  Google Scholar 

  13. W.M. Sherry, J.S. Erich, M.K. Bartschat, F.B. Prinz, IEEE Trans. Comp., Hybrids Manuf. Tech. 8, 417 (1985)

    Article  Google Scholar 

  14. D.G. Kim, H.S. Jang, J.W. Kim, S.B. Jung, J. Mater. Sci.: Mater. Elec. 16, 603 (2005)

    Article  CAS  Google Scholar 

  15. S. Ling, A. Dasgupta, Trans. ASME 118, 72 (1996)

    Google Scholar 

  16. D.G. Kim, J.W. Kim, S.B. Jung, Microelec. Eng. 82, 575 (2005)

    Article  CAS  Google Scholar 

  17. J.W. Kim, D.G. Kim, S.B. Jung, Microelec. Rel. 46, 535 (2006)

    Article  CAS  Google Scholar 

  18. J.W. Kim, S.B. Jung, Microelec. Eng. 82, 554 (2005)

    Article  CAS  Google Scholar 

  19. H. Ye, C. Basaran, D.C. Hopkins, Inter. J. Solid. Struct. 41, 4959 (2004)

    Article  Google Scholar 

  20. C.J. Zhai, Sidharth, R. Blish II, IEEE Trans. Device Mater. Rel. 3, 207 (2003)

    Google Scholar 

  21. M.P. Rodriquez, N.Y.A. Shammas, A.T. Plumpton, D. Newcombe, D.E. Crees, Microelec. Rel. 40, 455 (2000)

    Article  Google Scholar 

  22. J.H. Lau, IEEE Trans. Comp., Pack., Manuf. Tech. B 19, 728 (1996)

    Article  CAS  Google Scholar 

  23. V. Sarihan, IEEE Trans. Comp., Pack., Manuf. Tech. B 17, 626 (1994)

    Article  Google Scholar 

  24. C.G. Schmidt, J.W. Simons, C.H. Kanazawa, D.C. Elrich, IEEE Trans. Comp., Pack., Manuf. Tech. A 18, 611 (1995)

    Article  CAS  Google Scholar 

  25. B.Z. Hong, J. Elec. Mater. 26, 814 (1997)

    CAS  Google Scholar 

  26. B.Z. Hong, J. Elec. Mater. 28, 1071 (1999)

    CAS  Google Scholar 

  27. B.Z. Hong, L.G. Burrell, IEEE Trans. Comp., Pack., Manuf. Tech. A 18, 585 (1995)

    Article  CAS  Google Scholar 

  28. S.C. Chen, Y.C. Lin, C.H. Cheng, J. Mater. Proc. Tech. 171, 125 (2006)

    Article  CAS  Google Scholar 

  29. E.E. Underwood, in Quantitative Microscopy, ed. by R.T Dehoof, F.N. Rhines (McGraw-Hill, New York, 1968), p. 149

  30. B. Wunsch, X. Deng, N. Chawla, in Computational Methods in Materials Characterisation, ed. by A.A. Mammoli, C.A. Brebbia (WIT Press, Boston, 2004), pp. 175–184

  31. R.S. Sidhu, N. Chawla, Mater. Charact. 52, 225 (2004)

    Article  CAS  Google Scholar 

  32. M. Li, S. Ghosh, T.N. Rouns, H. Weiland, O. Richmond, W. Hunt, Mater. Charact. 41, 81 (1998)

    Article  CAS  Google Scholar 

  33. M. Li, S. Ghosh, O. Richmond, H. Weiland, T.N. Rouns, Mater. Sci. Eng. A 265, 153 (1999)

    Article  Google Scholar 

  34. M.V. Kral, M.A. Mangan, G. Spanos, R.O. Rosenberg, Mater. Charact. 45, 17 (2000)

    Article  CAS  Google Scholar 

  35. T. Yokomizo, M. Enomoto, O. Umezawa, G. Spanos, R.O. Rosenberg, Mater. Sci. Eng. A 344, 261 (2003)

    Article  Google Scholar 

  36. C.Y. Hung, G. Spanos, R.O. Rosenberg, M.V. Kral, Acta Mater. 50, 3781 (2002)

    Article  CAS  Google Scholar 

  37. A.C. Lund, P.W. Voorhees, Acta Mater. 50, 2582 (2002)

    Google Scholar 

  38. K.M. Wu, M. Enomoto, Scripta Mater. 46, 569 (2002)

    Article  CAS  Google Scholar 

  39. M. Yamaguchi, S.K. Biswas, Y. Suzuki, H. Furukawa, K. Takeo, FEMS Microbio. Lett. 219, 17 (2003)

    Article  CAS  Google Scholar 

  40. A. Tewari, A.M. Gokhale, Mater. Charact. 46, 329 (2001)

    Article  CAS  Google Scholar 

  41. M.V. Kral, G. Spanos, Acta Mater. 47, 711 (1999)

    Article  CAS  Google Scholar 

  42. J. Alkemper, P.W. Voorhees, Acta Mater. 49, 897 (2001)

    Article  CAS  Google Scholar 

  43. N. Chawla, K.K. Chawla, J. Mater. Sci. 41, 913–925 (2006)

    Article  CAS  Google Scholar 

  44. N. Chawla, V.V. Ganesh, B. Wunsch, Scripta Mater. 51, 161 (2004)

    Article  CAS  Google Scholar 

  45. N. Chawla, R.S. Sidhu, V.V. Ganesh, Acta Mater. 54, 1541 (2006)

    Article  CAS  Google Scholar 

  46. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Acta Mater. 52, 4291 (2004)

    Article  CAS  Google Scholar 

  47. W. Yang, L.E. Felton, R.W. Messler, J. Electron. Mater. 24, 1465 (1995)

    CAS  Google Scholar 

  48. K.N. Tu, R.D. Thompson, Acta Metall. 30, 947 (1982)

    Article  CAS  Google Scholar 

  49. X. Deng, G. Piotrowski, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1403 (2003)

    CAS  Google Scholar 

  50. K.H. Prakash, T. Sritharan, Acta Mater. 49, 2481 (2001)

    Article  CAS  Google Scholar 

  51. W.K. Choi, H.M. Lee, J. Electron. Mater. 29, 1207 (2000)

    CAS  Google Scholar 

  52. F. Guo, S. Choi, J.P. Lucas, K.N. Subramanian, J. Electron. Mater. 29, 1241 (2000)

    CAS  Google Scholar 

  53. D. Ma, W.D. Wang, S.K. Lahiri, J. Appl. Phys. 91, 3312 (2002)

    Article  CAS  Google Scholar 

  54. C.R. Kao, Mater. Sci. Eng. A 238, 196 (1997)

    Article  Google Scholar 

  55. S. Chada, R.A. Fournelle, W. Laub, D. Shangguan, J. Electron. Mater. 29, 1214 (2000)

    CAS  Google Scholar 

  56. Z. Mei, A.J. Sunwoo, J.W. Morris Jr, Metall. Trans. A 23, 857 (1992)

    Google Scholar 

  57. W.K. Choi, H.M. Lee, J. Electron. Mater 29, 1207 (2000)

    CAS  Google Scholar 

  58. H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng. A 358, 134 (2003)

    Article  Google Scholar 

  59. Y.C. Chan, A.C.K. So, J.K.L. Lai, Mater. Sci. Eng. B 55, 5 (1998)

    Article  Google Scholar 

  60. H.L.J. Pang, K.H. Tan, X.W. Shi, Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001)

    Article  Google Scholar 

  61. H.W. Miao, J.G. Duh, Mater. Chem. Phys. 71, 255 (2001)

    Article  CAS  Google Scholar 

  62. P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, Scripta Mater. 45, 1439 (2001)

    Article  CAS  Google Scholar 

  63. D.R. Frear, JOM 48, 49 (1996)

    CAS  Google Scholar 

  64. R.E. Pratt, E.I. Stromswold, D.J. Quesnel, J. Electron. Mater. 23, 375 (1994)

    CAS  Google Scholar 

  65. C.K. Alex, Y.C. Chan, IEEE Trans. CPMT-B 19, 661 (1996)

    Google Scholar 

  66. P.L. Tu, Y.C. Chan, J.K.L. Lai, IEEE Trans. CPMT-B 20, 87 (1997)

    CAS  Google Scholar 

  67. X. Deng, R.S. Sidhu, P. Johnson, N. Chawla, Metall. Mater. Trans A 36, 55 (2005)

    Google Scholar 

  68. X. Deng, M. Koopman, N. Chawla, K.K. Chawla, Mater. Sci. Eng. 364, 241 (2004)

    Google Scholar 

  69. M.A. James, D. Swenson, FRANC2D/L: A Crack Propagation Simulator for Plane Layered Structures, available from http://www.mne.ksu.edu/∼franc2d/.

  70. V.V. Ganesh, N. Chawla, Mater. Sci. Eng. A 391, 342 (2005)

    Article  Google Scholar 

  71. E.F. Rybicki, M.F. Kanninen, Eng. Frac. Mech. 9, 931 (1977)

    Article  Google Scholar 

  72. F. Erdogan, G.C. Sih, J. Basic Eng. (1963) 519

  73. A. Ayyar, N. Chawla, Comp. Sci. Tech. 66, 1980 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support for support of this research from the National Science Foundation under contract #DMR-0092530 (Drs. H. Chopra, S. Ankem, B. Macdonald and K.L. Murty, program managers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, N., Sidhu, R.S. Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys. J Mater Sci: Mater Electron 18, 175–189 (2007). https://doi.org/10.1007/s10854-006-9028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9028-0

Keywords

Navigation