Skip to main content
Log in

Viscoplastic behavior of bulk solder material under cyclic loading and compression of spherical joint-scale granules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The viscoplastic behavior of solder material is investigated from different scales. Due to the thermal stress in Sn–3.0Ag–0.5Cu alloy at elevated temperatures, the continuous accumulation of unrecoverable deformation becomes the key of interconnections failure in microelectronic packaging. In the current study, the rate and temperature dependence of inelastic deformation and cyclic hardening properties of Sn–3.0Ag–0.5Cu alloy under different loading conditions are studied. A novel phenomenological constitutive model is developed to describe the deformation of lead-free solder interconnections in the microelectronic packaging. The developed model is verified by comparing with the experimental data of bulk solder materials. The results show that the proposed model can accurately describe the viscoplastic properties of bulk solder materials and shows excellent numerical stability. For understanding better the overall deformation behaviors of solder joins, especially the strain–stress relationship, uniaxial compression experiments of spherical joint-scale granules were conducted under different loading rates. The developed model is applied to simulate the compression testing of granules. It shows that the developed model can characterize the viscoplastic compression deformation of Sn–3.0Ag–0.5Cu solder on joint-scale with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.F. Dale, Y. Singh, I. Bernander, G. Subbarayan, C. Handwerker, P. Su, B. Glasauer, J. Electron. Packag. 142(4), 041001 (2020)

    Article  Google Scholar 

  2. X. He, Y. Yao, L.M. Keer, Mech. Mater. 106, 35 (2017)

    Article  Google Scholar 

  3. G. Chen, X. Zhao, H. Wu, Adv. Mech. Eng. 9(8), 1687814017714976 (2017)

    Google Scholar 

  4. F. Qin, T. An, X.M. Wang, Beijing Gongye Daxue Xuebao (J. Beijing Univ. Technol.) 39(1), 14 (2013)

    CAS  Google Scholar 

  5. Y. Lee, C. Basaran, J. Electron. Packag. 133(4), 1696 (2011)

    Article  Google Scholar 

  6. N. Bai, X. Chen, Int. J. Plast. 25(11), 2181 (2009)

    Article  CAS  Google Scholar 

  7. D.L. McDowell, M.P. Miller, D.C. Brooks, Fatigue Electron. Mater. ASTM 1153, 42 (1994)

    Article  Google Scholar 

  8. Y. Tang, G.Y. Li, S.M. Luo, K.Q. Wang, B. Zhou, J. Electron. Mater. 44(7), 2440 (2015)

    Article  CAS  Google Scholar 

  9. D. Chan, G. Subbarayan, L. Nguyen, J. Electron. Mater. 41(2), 398 (2012)

    Article  CAS  Google Scholar 

  10. J. Gomez, C. Basaran, Mech. Mater. 38(7), 585 (2006)

    Article  Google Scholar 

  11. S. Wang, Y. Yao, X. Long, J. Mater. Sci. Mater. Electron. 28(23), 17682 (2017)

    Article  CAS  Google Scholar 

  12. C. Burke, J. Punch, I.E.E.E.T. Comp, Packag. Manuf. Technol. 4(3), 516 (2014)

    Article  CAS  Google Scholar 

  13. L. Anand, Int. J. Plast. 1(3), 213 (1985)

    Article  Google Scholar 

  14. K.O. Lee, J.W. Morris, F. Hua, J. Electron. Mater. 42(3), 516 (2013)

    Article  CAS  Google Scholar 

  15. H. Ma, J. Mater. Sci. 44(14), 3841 (2009)

    Article  CAS  Google Scholar 

  16. H. Tang, C. Basaran, J. Electron. Packag. 125(1), 120 (2003)

    Article  CAS  Google Scholar 

  17. Y. Yao, L.M. Keer, M.E. Fine, Intermetallics 18(8), 1603 (2010)

    Article  Google Scholar 

  18. S. Antonyuk, S. Heinrich, J. Tomas, N.G. Deen, M.S. Van Buijtenen, J.A.M. Kuipers, Granul. Matter. 12(1), 15 (2010)

    Article  CAS  Google Scholar 

  19. V. Pejchal, G. Žagar, R. Charvet, C. Dénéréaz, A. Mortensen, J. Mech. Phys. Solids. 99, 70 (2017)

    Article  CAS  Google Scholar 

  20. L. Liu, J. Wang, T. Zeng, Y. Yao, Acta Mech. Sin. 35(5), 1033 (2019)

    Article  CAS  Google Scholar 

  21. X. He, L. Liu, T. Zeng, Y. Yao, Int. J. Mech. Sci. 177, 105567 (2020)

    Article  Google Scholar 

  22. S.A.H. Motaman, U. Prahl, J. Mech. Phys. Solids 122, 205 (2019)

    Article  Google Scholar 

  23. V. Bratov, E.N. Borodin, Mater. Sci. Eng. A 631, 10 (2015)

    Article  CAS  Google Scholar 

  24. M. Zecevic, M. Knezevic, I.J. Beyerlein, C.N. Tomé, Mater. Sci. Eng. A 638, 262 (2015)

    Article  CAS  Google Scholar 

  25. T. Zeng, J.F. Shao, W.Y. Xu, Comptes Rendus Mécanique 343(2), 121 (2015)

    Article  Google Scholar 

  26. R. Pitchumani, G. Meesters, B. Scarlett, Powder Technol. 130, 421 (2003)

    Article  CAS  Google Scholar 

  27. J.S. Fu, Y.S. Cheong, G.K. Reynolds, M.J. Adams, A.D. Salman, M.J. Hounslow, Powder Technol. 140(3), 209 (2004)

    Article  CAS  Google Scholar 

  28. J. Huang, S. Xu, H. Yi, S. Hu, Powder Technol. 268(1), 86 (2014)

    Article  CAS  Google Scholar 

  29. Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan, Mater. Sci. Eng. A 635, 77 (2015)

    Article  CAS  Google Scholar 

  30. P. Lall, D. Zhang, V. Yadav, D. Locker, Microelectron. Reliab. 62, 4 (2016)

    Article  CAS  Google Scholar 

  31. R.A. Austin, D.L. McDowell, Int. J. Plasticity 27, 1 (2011)

    Article  CAS  Google Scholar 

  32. X. He, Y. Yao, Int. J. Solids Struct. 120, 236 (2017)

    Article  CAS  Google Scholar 

  33. M. Sauzay, Int. J. Plasticity 24, 727 (2008)

    Article  Google Scholar 

  34. Y.K. Wen, J. Eng. Mech. 101(4), 389 (1975)

    Google Scholar 

  35. Y. Yao, X. He, L.M. Keer, M.E. Fine, Acta. Mater. 83, 160 (2015)

    Article  CAS  Google Scholar 

  36. K.T. Chau, X.X. Wei, R. Wong, T.X. Yu, Mech. Mater. 32(9), 543 (2000)

    Article  Google Scholar 

  37. Y. Hiramatsu, Y. Oka, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 3(2), 89 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20190437), the Fundamental Research Funds for the Central Universities (Grant No. 30920021147), NUPTSF (Grant No. NY220131), the National Natural Science Foundation of China (No. 11772257) and the open research fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu He or Shaobing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, S., Wang, Y. et al. Viscoplastic behavior of bulk solder material under cyclic loading and compression of spherical joint-scale granules. J Mater Sci: Mater Electron 32, 20640–20650 (2021). https://doi.org/10.1007/s10854-021-06573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06573-3

Navigation