Skip to main content
Log in

Mechanical fatigue of Sn-rich Pb-free solder alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recent fatigue studies of Sn-rich Pb-free solder alloys are reviewed to provide an overview of the current understanding of cyclic deformation, cyclic softening, fatigue crack initiation, fatigue crack growth, and fatigue life behavior in these alloys. Because of their low melting temperatures, these alloys demonstrated extensive cyclic creep deformation at room temperature. Limited amount of data have shown that the cyclic creep rate is strongly dependent on stress amplitude, peak stress, stress ratio and cyclic frequency. At constant cyclic strain amplitudes, most Sn-rich alloys exhibit cycle-dependent and cyclic softening. The softening is more pronounced at larger strain amplitudes and higher temperatures, and in fine grain structures. Characteristic of these alloys, fatigue cracks tend to initiate at grain and phase boundaries very early in the fatigue life, involving considerable amount of grain boundary cavitation and sliding. The growth of fatigue cracks in these alloys may follow both transgranular and intergranular paths, depending on the stress ratio and frequency of the cyclic loading. At low stress ratios and high frequencies, fatigue crack growth rate correlates well with the range of stress intensities or J-integrals but the time-dependent C* integral provides a better correlation with the crack velocity at high stress ratios and low frequencies. The fatigue life of the alloys is a strong function of the strain amplitude, cyclic frequency, temperature, and microstructure. While a few sets of fatigue life data are available, these data, when analyzed in terms of the Coffin–Mason equation, showed large variations, with the fatigue ductility exponent ranging from  −0.43 to  −1.14 and the fatigue ductility from 0.04 to 20.9. Several approaches have been suggested to explain the differences in the fatigue life behavior, including revision of the Coffin–Mason analysis and use of alternative fatigue life models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. D.R. Frear, W.B. Jones, K.R. Kinsman (eds.), Solder Mechanics-A State of the Art Assessment (TMS Publication, Warrendale PA, 1991)

    Google Scholar 

  2. J.H. Lau (ed.), Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, New York, NY, 1991)

    Google Scholar 

  3. D.R. Frear, S.N. Burchett, H.S. Morgan, J.H. Lau (eds.), The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold, New York, NY, 1994)

    Google Scholar 

  4. R.N. Wild, Welding J.: Welding Res. Suppl. 51, 521-s–526-s (1972)

    Google Scholar 

  5. E.R. Bangs, R.E. Beal, Welding J.: Welding Res. Suppl. 54, 377s–383s (1975)

    Google Scholar 

  6. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 17, 171–180 (1988)

    CAS  Google Scholar 

  7. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Metals 40(6), 18–22 (1988)

    CAS  Google Scholar 

  8. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 18, 671–680 (1989)

    CAS  Google Scholar 

  9. D.R. Frear, IEEE Trans. Comp. Hybrids, Manuf. Technol., 12, 492–501 (1989)

    Article  Google Scholar 

  10. D. Tribula, D. Grivas, D.R. Frear, J.W. Morris Jr., ASME J. Electron. Packag. 111, 83–89 (1989)

    Article  Google Scholar 

  11. R. Satoh, K. Arakawa, M. Harada, K. Matsui, IEEE Trans. Comp. Hybrids, Manuf. Technol. 14, 224–232 (1991)

    Article  CAS  Google Scholar 

  12. J. Seyyedi, ASME J. Electron. Packag. 115, 305–311 (1993)

    Google Scholar 

  13. N.F. Enke, T.J. Kilinski, S.A. Schroeder, J.R. Lesniak, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 459–468 (1989)

    Article  CAS  Google Scholar 

  14. T.S.E. Summers, J.W. Morris Jr., ASME J. Electron. Packag. 112, 94–99 (1990)

    Google Scholar 

  15. Z. Mei, J.W. Morris Jr., ASME J. Electron. Packag. 114, 104–108 (1992)

    Google Scholar 

  16. Z. Guo, A. F. Sprecher, H. Conrad, ASME J. Electron. Packag. 114, 112–117 (1992)

    Google Scholar 

  17. Z. Guo, H. Conrad, ASME J. Electron. Packag. 115, 159–164 (1993)

    Google Scholar 

  18. W. Engelmaier, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-6, 232–237 (1983)

    Article  Google Scholar 

  19. R. Subrahmanyan, J. R. Wilcox, C.-Y. Li, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 480–491 (1989)

    Article  CAS  Google Scholar 

  20. Y.-H. Pao, IEEE Trans. Comp. Hybrids, Manuf. Technol. 15, 559–570 (1992)

    Article  Google Scholar 

  21. H.D. Solomon, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 423–432 (1986)

    Article  CAS  Google Scholar 

  22. E.C. Cutiongco, S. Waynman, M.E. Fine, D.A. Jeannnotte, ASME J. Electron. Packag. 112, 110–114 (1990)

    Google Scholar 

  23. W.A. Logsdon, P.K. Liaw, M.A. Burke, Eng. Fract. Mech. 36, 183–218 (1990)

    Article  Google Scholar 

  24. P.K. Liaw, M.A. Burke, Scripta Metall. 23, 747–752 (1989)

    Article  CAS  Google Scholar 

  25. S.-M. Lee, D.S. Stone, ASME J. Electron. Packag. 114, 118–121 (1992)

    Google Scholar 

  26. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  CAS  Google Scholar 

  27. M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95–141 (2000)

    Article  Google Scholar 

  28. T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, NIST Report “Database for Solder Properties with Emphasis on New Lead-Free Solders". Sept. 2000

  29. S. Vaynman, H. Mavoori, M.E. Fine, Advances in electronic packaging, Proc. international Intersociety electronic packaging Conf.—INTERPAC-95,American society of Mechanical engineers, 135–146 (1995)

  30. J. Liang, N. Gollhardt, S.P. Lee, S.A. Schroeder, M.L. Morris, Fatigue Fract. Eng. Mater. Struc. 19, 1401–1409 (1996)

    CAS  Google Scholar 

  31. Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 866 (1998)

    CAS  Google Scholar 

  32. Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 1229–1235 (1998)

    CAS  Google Scholar 

  33. Y. Kariya, T. Morihata, E. Hazawa, M. Otsuka, J. Electron. Mater. 30, 1184–89 (2001)

    CAS  Google Scholar 

  34. C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 456–65 (2002)

    CAS  Google Scholar 

  35. J.H.L. Pang, B.S. Xiong, T.H. Low, Int. J. Fatigue 26, 865–872 (2004)

    Article  CAS  Google Scholar 

  36. Q.L. Zeng, Z.G. Wang, A.P. Xian, J.K. Shang, J. Electron. Mater. 34, 62–67 (2005)

    CAS  Google Scholar 

  37. V. Stolkarts, L.M. Keer, M.E. Fine, J. Mech. Phys. Solids 47, 2451 (1999)

    Article  CAS  Google Scholar 

  38. Q. Zeng, Z. G. Wang, A.P. Xian, J.K. Shang, Chin. J. Mater. Res. 18(1), 11–17 (2004)

    CAS  Google Scholar 

  39. C. Kanchanomai, Y. Mutoh, Mater. Sci. Eng. A 381, 113–120 (2004)

    Article  CAS  Google Scholar 

  40. C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Mater. Sci. Eng. A 345, 90–98 (2003)

    Article  Google Scholar 

  41. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1996)

    Google Scholar 

  42. B. Budiansky, R.J. O’Connel, Int. J. Solids Struct. 12, 81 (1976)

    Article  Google Scholar 

  43. L.M. Kachanov, Introduction to Continuum Damage Mechanics. (Kluwers Academic Publishers, 1986)

  44. R. Zallen, The Physics of Amorphous Solids. (John Wiley & Sons, New York, 1983)

    Book  Google Scholar 

  45. C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 142–151 (2002)

    CAS  Google Scholar 

  46. S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler, J. Electron. Mater. 29, 1249 (2000)

    CAS  Google Scholar 

  47. M.A. Martin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Sripta Mater. 53, 927–932 (2005)

    Article  CAS  Google Scholar 

  48. J. Zhao, Y. Miyashita, Y. Mutoh, Int. J. Fatigue 23, 723–31 (2001)

    Article  CAS  Google Scholar 

  49. Y. Mutoh, J. Zhao, Y. Miyashita, C. Kanchanomai, Soldering Surf. Mount Technol. 14/3, 37–45 (2002)

    Google Scholar 

  50. J. Zhao, Y. Mutoh, Y. Miyashita, S.L.Mannan, J. Electron. Mater. 31, 879–886 (2002)

    CAS  Google Scholar 

  51. J. Zhao, Y. Mutoh, Y. Miyashita, L. Wang, Eng. Fract. Mech. 70, 2187–21 (2003)

    Article  Google Scholar 

  52. C. Anderson, Z. Lai, J. Liu, H. Jiang, Y. Yu, Mater. Sci. Eng. A 394, 20–27 (2005)

    Article  CAS  Google Scholar 

  53. J.H.L. Pang, B.S. Xiong, T.H. Low, Thin Solid Films 462463, 408–12 (2004)

    Article  CAS  Google Scholar 

  54. C. Kanchanomai, Y. Mutoh, J. Electron. Mater. 33, 329–333 (2004)

    CAS  Google Scholar 

  55. X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Int. J. Fatigue 22, 217 (2000)

    Article  CAS  Google Scholar 

  56. X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Scripta Mater. 41, 289 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this study was provided by the Chinese Natural Science Foundation under the grant 50228101 and the National Basic Research Program of China, No. 2004CB619306. Discussions with Prof. Zhongguang Wang are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J.K., Zeng, Q.L., Zhang, L. et al. Mechanical fatigue of Sn-rich Pb-free solder alloys. J Mater Sci: Mater Electron 18, 211–227 (2007). https://doi.org/10.1007/s10854-006-9027-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9027-1

Keywords

Navigation