Skip to main content
Log in

Electrical characteristics of ZrN metallised metal-oxide-semiconductor and metal-insulator-metal devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties of DC reactive sputtered zirconium-nitride metallized metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) devices on TiO2/p-Si and TiO2/ZrN films were studied using capacitance-voltage (C-V) and current-voltage (I-V) measurements at room temperature. Capacitances of the ZrN/TiO2/p-Si MOS device were measured in accumulation mode and inversion mode, from which flat band capacitance was found to be 2.86pF, which corresponds to flat band voltage of −1.7 V. Fixed oxide charged density and interface state density was found to be 1.63× 1010 cm−2 and 6.3× 1011 cm−2 eV−1. I-V characteristics revealed that the leakage current density was of 0.5 mA/cm2 in accumulation mode and 2 mA/cm2 in inversion mode at a field of 0.12 MV/cm, respectively. Dielectric breakdown of ZrN/TiO2/p-Si device was found to be 0.12 MV/cm in accumulation mode. Based on the C-V and I-V characteristics, the ZrN/TiO2/ZrN structure showed no variation in the capacitance value as the bias voltage was changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C.Y., Sze, S.M., “ULSI Technology” Mc Graw-Hill New York, (1996)

    Google Scholar 

  2. EIMORI, T. et al., Int. Electron. Devices Meeting-Tech Digest. 93, 631 (1993)

    Google Scholar 

  3. GOSCH, J., Electron Design Sept. (1991)

  4. RAUSCH, N., BURTE, E.P., J. Electrochem. Soc. 140, 145 (1993)

    Google Scholar 

  5. BERTRAND, P.A., FLEISCHAUER, P.D., Thin Solid Films 103, 167 (1983)

    Article  CAS  Google Scholar 

  6. DESU, S.B., Mater. Sci. Eng. B. 13, 299 (1992)

    Article  Google Scholar 

  7. FEUERSANGER, A.E., Proc. IEEE. 52, 1463 (1964)

    Article  Google Scholar 

  8. BROWN, W.D., GRANNEMANN, W.W., Solid-State Electron. 21, 838 (1978)

    Article  Google Scholar 

  9. YEUNG, K.S., LAM, Y.W., Thin Solid Films 109, 169 (1983)

    Article  CAS  Google Scholar 

  10. FUYUKI, T., MATSUNAMI, H., Jpn. J. Appl. Phys. 9, 1288 (1986)

    Article  Google Scholar 

  11. FUKUSHIMA, K., YAMADA, I., J. Appl. Phys. 65, 619 (1988)

    Article  Google Scholar 

  12. TAKEUCHI, M., ITOH, T., NAGASAKA, H., Thin Solid Films 51, 83 (1978)

    Article  CAS  Google Scholar 

  13. BURNS, G.P., J. Appl. Phys. 65, 2095 (1984)

    Article  Google Scholar 

  14. HYUNJUNG, S., J. Appl. Phys. 83, 6 (1998)

    Google Scholar 

  15. BHUVANESWARI, H.B., Priya, I.N., CHANDRAMANI, R., REDDY, V.R., RAO, G.M., J. Crys. Res. Technol. 38, 1047 (2003)

    Article  CAS  Google Scholar 

  16. SAWADA, T., HASEGAWA, H. Thin Solid Films 56, 183 (1979)

    Article  CAS  Google Scholar 

  17. RAO, G.M., KRUPANIDHI, S.B. Thin Solid Films 249, 100 (1994)

    Article  Google Scholar 

  18. LEHOVEC, K., SLOBODOSKOY, A., Solid -State Electron. 7, 59 (1964)

    Article  Google Scholar 

  19. NAGACHOUDHURI, D., “Principles of Microelectronics Technology”, Wheeler publisher 57, (1998)

  20. KIM, H., CAMBELL, S.A., GILMER, D.C., IEEE Electron Device Lett. 18, 465 (1997)

    Article  Google Scholar 

  21. CHATTERJEE, S., NANDI, S.K., MAIKAP, S., SAMANTA, S.K., MALTi, C.K., Semicond. Sci. Technol. 18, 92 (2003)

    Article  CAS  Google Scholar 

  22. LEE, B.H., JEON, Y., ZAWADZKI, K., Qi, W.J., LEE, J., J. Appl. Phys. Lett. 74, 3143 (1999)

    Article  CAS  Google Scholar 

  23. RASTOGI, A.C., SHARMA, R.N., J. Appl. Phys. 72, 5041 (1992)

    Article  Google Scholar 

  24. OEHRLEIN, G.S., J. Appl. Phys. 59, 1587 (1986)

    Article  CAS  Google Scholar 

  25. GURVITCH, M., MANCHANDA, L., GIBSON, J.M., Appl. Phys. Lett. 51, 919 (1986)

    Article  Google Scholar 

  26. MANCHANDA, L., GURVITCH, IEEE Electron Device Lett. 9, 180 (1988)

    Article  CAS  Google Scholar 

  27. SHINIRIKI, H., NAKATA, M., IEEE Trans-Electron Devices 38, 455 (1991)

    Article  Google Scholar 

  28. ROBERTS, S., RAYAN, J., NERBIT, L., J. Electrochem. Soc. 133, 1405 (1986)

    CAS  Google Scholar 

  29. Rao, G.M., KRUPANIDHI, S.B., J. Appl. Phys. 75, 2604 (1994)

    Article  CAS  Google Scholar 

  30. MICHAEL, S., “Physics of Semiconductor Devices, ” Prentice-Hall of India Pvt. Ltd., New Delhi, (1995)

    Google Scholar 

  31. LAMPERT, M., “Current injection in Solids, ” Academic Press, New York, (1970)

    Google Scholar 

  32. ALEXANDROV, P., KOPRINAROVA, J., TODOROV, D., Solid-State Electron., 47, 1333 (1996)

    CAS  Google Scholar 

  33. FUYUKI, T., MATSUNAMI, H., Jpn. J. Appl. Phys. 25, 1288 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhuvaneswari, H.B., Reddy, V.R. & Rao, G.M. Electrical characteristics of ZrN metallised metal-oxide-semiconductor and metal-insulator-metal devices. J Mater Sci: Mater Electron 17, 335–339 (2006). https://doi.org/10.1007/s10854-006-7466-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-7466-3

Keywords

Navigation