Skip to main content
Log in

Enhancing oxidation resistance with Si in Fe36Ni36Al15Cr10Si2Mo1 multi-principal element alloy at 700 °C

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The eutectic high entropy alloys with large amounts of Al and Cr have exhibited superior oxidation resistance. Here, we confirmed that Si could further enhance the oxidation resistance by forming a continuous oxidation layer in Fe36Ni36Al15Cr10Si2Mo1 alloy. Si promoted the outward diffusion and transformation of Al which effectively enhanced the oxidation resistance. The FeCr2O4 spinel and silicate formed by the solid-state reaction also contributed to the oxidation resistance. The thermodynamic and kinetic factors were then discussed to understand the inherent oxidation mechanism of the dual-phase Fe36Ni36Al15Cr10Si2Mo1 alloy, which provide new insights into the dual-phase alloy design and oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data and code related to this study can be obtained from the corresponding author upon reasonable request.

References

  1. Zhang Y, Wu H, Yu X, Tang D (2022) Role of Cr in the high-temperature oxidation behavior of CrXMnFeNi high-entropy alloys at 800 °C in air. Corros Sci 200:110211

    Article  CAS  Google Scholar 

  2. He F, Wang Z, Ai C, Li J, Wang J, Kai J (2019) Grouping strategy in eutectic multi-principal-component alloys. Mater Chem Phys 221:138–143

    Article  CAS  Google Scholar 

  3. Wang M, Lu Y, Wang T, Zhang C, Cao Z, Li T, Liaw PK (2021) A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scr Mater 204:114132

    Article  CAS  Google Scholar 

  4. Wang M, Lu Y, Lan J, Wang T, Zhang C, Cao Z, Li T, Liaw PK (2023) Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications. Acta Mater 248:118806

    Article  CAS  Google Scholar 

  5. Yang X, Liu H, Chen B, Ge M, Qian Y, Wang J (2022) Corrosion behavior of GH3535 alloy in molten LiF-BeF2 salt. Corros Sci 199:110168

    Article  CAS  Google Scholar 

  6. Garip Y (2022) An investigation on the corrosion performance of Fe2CoCrNi0.5 based high entropy alloys. Corros Sci 206:110497

    Article  CAS  Google Scholar 

  7. Garcia-Diaz BL, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J (2016) High temperature electrochemical engineering and clean energy systems. J South Carol Acad Sci 14:4

    Google Scholar 

  8. Wang YP, Li BS, Ren MX, Yang C, Fu HZ (2008) Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng A 491:154–158

    Article  Google Scholar 

  9. Wu M, Chen K, Xu Z, Li DJW (2020) Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy. Wear 462:203493

    Article  Google Scholar 

  10. Yang S, Liu Z, Pi JJML (2020) Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing. Mater Lett 261:127004

    Article  CAS  Google Scholar 

  11. Wu M, Setiawan RC, Li DJW (2022) Benefits of passive element Ti to the resistance of AlCrFeCoNi high-entropy alloy to corrosion and corrosive wear. Wear 492:204231

    Article  Google Scholar 

  12. Wu Q, Wang Z, He F, Yang Z, Li J, Wang J (2022) Endless recrystallization of high-entropy alloys at high temperature. J Mater Sci Technol 128:71–81

    Article  CAS  Google Scholar 

  13. Wu Q, Wang Z, Hu X, Zheng T, Yang Z, He F, Li J, Wang JJAM (2020) Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater 182:278–286

    Article  CAS  Google Scholar 

  14. Jeon SJ, Lee H-C (1992) Effect of copper alloying on the deformation behavior of B2 NiAl intermetallic compounds. In: High temperature aluminides and intermetallics, pp. 392–397. Elsevier

  15. Zhu J, Zhang H, Fu H, Wang A, Li H, Hu Z (2010) Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J Alloy Compd 497:52–56

    Article  CAS  Google Scholar 

  16. Dong Y, Lu Y, Kong J, Zhang J, Li T (2013) Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloy Compd 573:96–101

    Article  CAS  Google Scholar 

  17. Nong Z-S, Zhu J-C, Zhao R-D (2017) Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys. Intermetallics 86:134–146

    Article  CAS  Google Scholar 

  18. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ (2010) Microstructures and compressive properties of multicomponent AlCoCrFeNiMoX alloys. Mater Sci Eng A 527:6975–6979

    Article  Google Scholar 

  19. Wu Q, He F, Li J, Kim HS, Wang Z, Wang J (2022) Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile. Nat Commun 13:4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Wang Z, Shi X, Liu X, Jia Y, Li J, He F, Wang J (2023) Alloying behavior of W and Mo in the as-cast dual-phase FeNiCrAl multi-component alloys. J Alloy Compd 951:169951

    Article  CAS  Google Scholar 

  21. Liu X, Wang J, Shi X, Jia Y, Liu L, Li J, He F, Wang Z, Wang J (2023) Effects of metalloid Si on the microstructure and mechanical properties of Fe36Ni36Cr10Mo1Al17XSiX alloys. J Alloy Compd 963:171164

    Article  CAS  Google Scholar 

  22. Gorr B, Mueller F, Christ HJ, Mueller T, Chen H, Kauffmann A, Heilmaier M (2016) High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb–20Mo–20Cr–20Ti–20Al with and without Si addition. J Alloy Compd 688:468–477

    Article  CAS  Google Scholar 

  23. Niu Y, Wu Y, Gesmundo FJCS (2006) The oxidation of three Ni–6Si–xAl alloys in 1 atm O2 at 1000 °C. Corros Sci 48:1–22

    Article  CAS  Google Scholar 

  24. Wu Y, Gesmundo F, Niu Y (2006) The effect of silicon on the oxidation of a Ni-6 at% Al alloy in 1 atm of pure O2 at 900 °C. Oxid Met 65:53–74

    Article  CAS  Google Scholar 

  25. Wang S, Wu Y, Ni CS, Niu Y (2009) The effect of Si additions on the high temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1 atm O2 at 1100 °C. Corros Sci 51:511–517

    Article  CAS  Google Scholar 

  26. Chen L, Zhou Z, Tan Z, He D, Bobzin K, Zhao L, Öte M, Königstein T (2018) High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys. J Alloys Compd 764:845–852

    Article  CAS  Google Scholar 

  27. Butler TM, Weaver ML (2016) Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloy Compd 674:229–244

    Article  CAS  Google Scholar 

  28. Laplanche G, Volkert U, Eggeler G, George E (2016) Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid Met 85:629–645

    Article  CAS  Google Scholar 

  29. Li Y, Zhang P, Zhang J, Chen Z, Shen B (2021) Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100 °C. Corros Sci 190:109633

    Article  CAS  Google Scholar 

  30. Jing Y, Cui X, Liu D, Fang Y, Chen Z, Liu A, Wang X, Jin G (2022) The effects of lattice distortion magnitude on the oxidation performance of laser-cladded NiCoCr–M (M = Al, Fe, Si) multi-principal element alloy coatings under high temperature exposure. Surf Interfaces 33:102305

    Article  CAS  Google Scholar 

  31. Kai W, Li CC, Cheng FP, Chu KP, Huang RT, Tsay LW, Kai JJ (2017) Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900 °C. Corros Sci 121:116–125

    Article  CAS  Google Scholar 

  32. Nezakat M, Akhiani H, Penttilä S, Szpunar J (2016) Oxidation behavior of austenitic stainless steel 316L and 310S in air and supercritical water. J Nucl Eng Radiat Sci 2:021008

    Article  Google Scholar 

  33. Wang H, Liang G, Meng C, An X, Wang Y, He X (2023) Technology, A comparative study on the corrosion performance of four FeCrAl alloys with different Cr contents in contact with oxygen-saturated LBE. J Market Res 23:3492–3504

    CAS  Google Scholar 

  34. Zhang Y, Zhang G, Yang Q, Cao W, Pu J, Zhu C (2020) Effects of Al sputtering film on the oxidation behavior of NiCrAlY bondcoat. Coatings 10:376

    Article  CAS  Google Scholar 

  35. Park SY, Seo D, Kim SW, Kim SE, Hong JK, Lee DBJI (2016) High temperature oxidation of Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C alloy. Intermetallics 74:8–14

    Article  CAS  Google Scholar 

  36. Zhang Y, Zou D, Wang X, Wang Q, Xu R, Zhang W (2021) Influences of Si content on the high-temperature oxidation behavior of X10CrAlSi18 ferritic heat-resistant stainless steel at 700 °C and 800 °C. Surf Coat Technol 422:127523

    Article  CAS  Google Scholar 

  37. Wang H, Liu P, Chen X, Lu Q, Zhou H (2022) Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy. J Alloy Compd 906:163947

    Article  CAS  Google Scholar 

  38. Wagner C (1959) Reaktionstypen bei der Oxydation von Legierungen, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische. Chemie 63:772–782

    CAS  Google Scholar 

  39. Langelier B, Persaud S, Newman R, Botton G (2016) An atom probe tomography study of internal oxidation processes in Alloy 600. Acta Mater 109:55–68

    Article  CAS  Google Scholar 

  40. Shen Z, Zhang J, Wu S, Luo X, Jenkins BM, Moody MP, Lozano-Perez S, Zeng X (2022) Microstructure understanding of high Cr–Ni austenitic steel corrosion in high-temperature steam. Acta Mater 226:117634

    Article  CAS  Google Scholar 

  41. Shen Z, Tweddle D, Yu H, He G, Varambhia A, Karamched P, Hofmann F, Wilkinson AJ, Moody MP, Zhang L (2020) Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization. Acta Mater 194:321–336

    Article  CAS  Google Scholar 

  42. Shen Z, Chen K, Yu H, Jenkins B, Ren Y, Saravanan N, He G, Luo X, Bagot PA, Moody MP (2020) New insights into the oxidation mechanisms of a Ferritic–Martensitic steel in high-temperature steam. Acta Mater 194:522–539

    Article  CAS  Google Scholar 

  43. Chen K, Zhang L, Shen Z (2020) Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization. Acta Mater 194:156–167

    Article  CAS  Google Scholar 

  44. Ren X, Zhang W, Zhang Y, Zhang P, Liu J (2015) Effects of Fe2O3 content on microstructure and mechanical properties of CaO–Al2O3–SiO2 system. Trans Nonferrous Met Soc China 25:137–145

    Article  CAS  Google Scholar 

  45. Du Z, Chen X, Zhang Y, Que X, Liu P, Zhang X, Ma H-L, Zhai MJM (2020) One-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorption. Materials 13:3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Der Zaag P, Bloemen P, Gaines J, Wolf R, Van Der Heijden P, Van de Veerdonk R, De Jonge W (2000) On the construction of an Fe3O4-based all-oxide spin valve. J Magn Magn Mater 211:301–308

    Article  Google Scholar 

  47. Limpichaipanit A, Jiansirisomboon S, Tunkasiri T (2017) Sintering temperature-microstructure-property relationships of alumina matrix composites with silicon carbide and silica additives. Sci Eng Compos Mater 24:495–500

    Article  CAS  Google Scholar 

  48. Ji C, Li L, Gao W, Wang J, Han JJCI (2023) Influence of Al2O3/SiO2 ratio in multicomponent LNAS glasses and glass-ceramics on the crystallization behavior, microstructure and mechanical performance. Ceram Int 49:10652–10662

    Article  CAS  Google Scholar 

  49. Ostovari Moghaddam A, Shaburova NA, Sudarikov MV, Veselkov SN, Samoilova OV, Trofimov EA (2021) High temperature oxidation resistance of Al0.25CoCrFeNiMn and Al0.45CoCrFeNiSi0.45 high entropy alloys. Vacuum 192:110412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant 51874245) and the Natural Science Basic Research Program of Shaanxi (Program No. 2022JC-28).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: XL involved in conceptualization, investigation, writing—original draft, writing—review and editing and visualization. XS involved in methodology, validation and data curation. JW involved in formal analysis and writing—review and editing. YJ involved in methodology and writing—review and editing. ZW involved in supervision, project administration, writing—review and editing and funding acquisition. FH, JL and JW involved in supervision.

Corresponding author

Correspondence to Zhijun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shi, X., Wang, J. et al. Enhancing oxidation resistance with Si in Fe36Ni36Al15Cr10Si2Mo1 multi-principal element alloy at 700 °C. J Mater Sci 59, 10444–10460 (2024). https://doi.org/10.1007/s10853-024-09752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09752-9

Navigation