Skip to main content
Log in

A novel in-situ synthesis of magnetic graphene nanocomposites by Fe2(SO4)3 intercalation for removal of congo red from water: adsorption investigation and mechanism insights

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel magnetic graphene nanocomposites (MGN) was fabricated via a environment-friendly electrochemical exfoliation in Fe2(SO4)3 aqueous solutions. Ferrous sulfate in the electrolyte had the potential to enhance both the exfoliation efficiency of graphite and the in-situ magnetization of graphene. The as-obtained MGN-700 °C was explored as an adsorbent for the removal of Congo red (CR) from aqueous solutions. The adsorption equilibrium was rapidly achieved in 20 min, and the kinetic adsorption was well fitted with the pseudo-second-order kinetic model. Meanwhile, the adsorption isotherms followed the Freundlich model with a maximum capability of 582 mg g−1 for CR. Moreover, thermodynamic study indicated that the adsorption process was spontaneous and exothermic. Characterizations of the adsorbent suggested that the adsorption mechanisms of CR onto MGN-700 °C mainly involved hydrogen bond, electrostatic interaction and π–π stacking. After five cycles of adsorption/desorption, the removal efficiency of CR onto MGN-700 °Cremained at approximately 80%, demonstrating its excellent reusability. Furthermore, the adsorbent exhibited high adsorption capacity and a ferromagnetic feature, indicating its potential practical application in dye wastewater treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Upreti D, Rajendran A, Lenka N, Srivastava R, Gupta RS, Maiti B, Bose S, Patro TU (2023) Designing a robust biocompatible porous polymeric membrane using Laponite and graphene oxide for versatile and selective adsorption of water contaminants. Chem Eng J 464:142738

    Article  CAS  Google Scholar 

  2. Wu Y, Zhang N, Yuen G, Lannoy CF (2023) Cross-linked iron nanoparticle-doped reduced graphene oxide membranes for micropollutant removal from water. Chem Eng J 455:140624

    Article  CAS  Google Scholar 

  3. Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y, Shen W, Peng Y (2019) Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J Colloid Interface Sci 554:682–691

    Article  CAS  PubMed  Google Scholar 

  4. Molla A, Li Y, Mandal B, Kang SG, Hur SH, Chung JS (2019) Selective adsorption of organic dyes on graphene oxide: theoretical and experimental analysis. Appl Surf Sci 464:170–177

    Article  CAS  Google Scholar 

  5. Zourou A, Ntziouni A, Adamopoulos ND, Roman T, Zhang F, Terrones M, Kordatos KV (2023) Graphene oxide–MnFe2O4 nanohybrid material as an adsorbent of congo red dye. J Phys Chem Solids 181:111490

    Article  CAS  Google Scholar 

  6. Jin W, Nan J, Chen M, Song L, Wu F (2023) Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism. J Hazard Mater 452:131273

    Article  CAS  PubMed  Google Scholar 

  7. Liang H, Guo P, Yang Y, Wang W, Sun Z (2022) Environmental application of engineering magnesite slag for phosphate adsorption from wastewater. Environ Sci Pollut R 29:59502–59512

    Article  CAS  Google Scholar 

  8. Ismail GA, Sakai H (2022) Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere 291:132906

    Article  CAS  PubMed  Google Scholar 

  9. Svetozarević M, Šekuljica N, Onjia A, Barać N, Mihajlović M, Knežević-Jugović Z, Mijin D (2022) Biodegradation of synthetic dyes by free and cross-linked peroxidase in microfluidic reactor. Environ Technol Innov 26:102373

    Article  Google Scholar 

  10. Liu Y, Du J, Wu H, Cong C, Zhang H, Wang J, Wang Z (2022) Antifouling streptomycin-based nanofiltration membrane with high permselectivity for dye/salt separation. Sep Purif Technol 297:121443

    Article  CAS  Google Scholar 

  11. Ding J, Pan Y, Li L, Liu H, Zhang Q, Gao G, Pan B (2020) Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. Chem Eng J 384:123232

    Article  CAS  Google Scholar 

  12. Liang H, Wang W, Liang W, Deng X, Ruan X, Zhang D, Yang Y (2023) Facile fabrication of nitrate-activated magnesite wastes-derived porous adsorbents with abundant active sites for highly efficient phosphate removal. J Environ Chem Eng 11:109126

    Article  CAS  Google Scholar 

  13. Liang H, Wang W, Liu H, Deng X, Zhang D, Zou Y, Ruan X (2023) Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO3)2 for phosphate removal: Synergistic enhancement of porosity and active sites. Chemosphere 324:138320

    Article  CAS  PubMed  Google Scholar 

  14. Lyu W, Li J, Trchová M, Wang G, Liao Y, Bober P, Stejskal J (2022) Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J Hazard Mater 435:129004

    Article  PubMed  Google Scholar 

  15. Alqarni LS, Algethami JS, Billah REK, Alorabi AQ, Alnaam YA, Algethami FK, Bahsis L, Jawad AH, Wasilewska M, L´opez-Maldonado EA (2024) A novel chitosan-alginate@Fe/Mn mixed oxide nanocomposite for highly efficient removal of Cr (VI) from wastewater: experiment and adsorption mechanism. Int J Biol Macromol 263:129989

    Article  CAS  PubMed  Google Scholar 

  16. Billah REK, Zaghloul A, Bahsis L, Oladoja NA, Azoubi Z, Taoufyk A, Majdoubi H, Algethami JS, Soufiane A, L´opez-Maldonado EA, Wasilewska M, Elboughdiri N (2024) Multifunctional biocomposites based on cross-linked Shrimp waste-derived chitosan modified Zn2+@calcium apatite for the removal of methyl orange and antibacterial activity. Mater Today Sustain 25:100660

    Article  Google Scholar 

  17. Liu B, Liu M, Xie Z, Li Y, Zhang A (2022) Performance of defective Zr-MOFs for the adsorption of anionic dyes. J Mater Sci 57:5438–5455. https://doi.org/10.1007/s10853-022-06874-w

    Article  CAS  Google Scholar 

  18. Liu Y, Ke Y, Shang Q, Yang X, Wang D, Liao G (2023) Fabrication of multifunctional biomass-based aerogel with 3D hierarchical porous structure from waste reed for the synergetic adsorption of dyes and heavy metal ions. Chem Eng J 451:138934

    Article  CAS  Google Scholar 

  19. Liu B, Lv P, Wu R, Bai Y, Wang J, Su W, Song X, Yu G (2023) Coal gasification fine slag based multifunctional nanoporous silica microspheres for synergistic adsorption of Pb(II) and Congo red. Sep Purif Technol 323:124478

    Article  CAS  Google Scholar 

  20. Tang Y, Zhang X, Li X, Bai J, Yang C, Zhang Y, Xu Z, Jin X, Jiang Y (2023) Facile synthesis of magnetic ZnAl layered double hydroxides and efficient adsorption of malachite green and Congo red. Sep Purif Technol 322:124305

    Article  CAS  Google Scholar 

  21. Buu TT, Son VH, Nam NTH, Hai ND, Vuong HT, Quang LTK, Dat NM, Lin TH, Phong MT, Hieu NH (2023) Three-dimensional ZnO–TiO2/graphene aerogel for water remediation: the screening studies of adsorption and photodegradation. Ceram Int 49:9868–9882

    Article  CAS  Google Scholar 

  22. Cano FJ, Reyes-Vallejo O, Ashok A, Olvera ML, Velumani S, Kassiba A (2023) Mechanisms of dyes adsorption on titanium oxide-graphene oxide nanocomposites. Ceram Int 49:21185–21205

    Article  CAS  Google Scholar 

  23. Cheng P, Wang X, Markus J, Wahab MA, Chowdhury S, Xin R, Alshehri SM, Bando Y, Yamauchi Y, Kaneti YV (2023) Carbon nanotube-decorated hierarchical porous nickel/carbon hybrid derived from nickel-based metal-organic framework for enhanced methyl blue adsorption. J Colloid Interface Sci 638:220–230

    Article  CAS  PubMed  Google Scholar 

  24. Walling B, Bharali P, Ramachandran D, Viswanathan K, Hazarika S, Dutta N, Mudoi P, Manivannan J, Kamath SM, Kumari S, Vishwakarma V, Sorhie V, Gogoi B, Acharjee SA (2023) In-situ biofabrication of bacterial nanocellulose (BNC)/graphene oxide (GO) nano-biocomposite and study of its cationic dyes adsorption properties. Int J Biol Macromol 251:126309

    Article  CAS  PubMed  Google Scholar 

  25. Tran ML, Tran TTV, Juang RS, Nguyen CH (2023) Graphene oxide crosslinked chitosan composites for enhanced adsorption of cationic dye from aqueous solutions. J Taiwan Inst Chem E 142:104678

    Article  CAS  Google Scholar 

  26. Dang A, Yuan Z, Liu X, Ma S, Yang Y, Zada A, Gao Y, Liu Y, Li T, Han Y (2023) Graphene oxide mediated carbon foam/CNTs composites for highly efficient adsorption of methylene blue and mechanism insight. Ceram Int 49:36970–36978

    Article  CAS  Google Scholar 

  27. Das TR, Patra S, Madhuri R, Sharma PK (2018) Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J Colloid Interface Sci 509:82–93

    Article  CAS  PubMed  Google Scholar 

  28. Othman NH, Alias NH, Shahruddin MZ, Bakar NFA, Him NRN, Lau WJ (2018) Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J Environ Chem Eng 6:2803–2811

    Article  CAS  Google Scholar 

  29. Dang A, liu X, Wang Y, Liu Y, Cheng T, Zada A, Ye F, Deng W, Sun Y, Zhao T, Li T (2023) High-efficient adsorption for versatile adsorbates by elastic reduced graphene oxide/Fe3O4 magnetic aerogels mediated by carbon nanotubes. J Hazard Mater 457:131846

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Dong X, Zhao L (2021) Application of magnetic chitosan nanocomposites modified by graphene oxide and polyethyleneimine for removal of toxic heavy metals and dyes from water. Int J Biol Macromol 192:118–125

    Article  CAS  PubMed  Google Scholar 

  31. Hu QD, Jiang HL, Lam KH, Hu ZP, Liu ZJ, Wang HY, Yang YY, Baigenzhenov O, Hosseini-Bandegharaei A, He FA (2023) Polydopamine-modification of a magnetic composite constructed from citric acid–cross-linked cyclodextrin and graphene oxide for dye removal from waters. Environ Sci Pollut R 30:78521–78536

    Article  CAS  Google Scholar 

  32. Sirajudheen P, Nikitha MR, Karthikeyan P, Meenakshi S (2020) Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: adsorption investigation of parametric studies and their mechanisms. Surf Interfaces 21:100648

    Article  CAS  Google Scholar 

  33. Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3d graphene/nanoparticle aerogel. Adv Mater 23:5679–5683

    Article  CAS  PubMed  Google Scholar 

  34. Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Mu¨ llen, K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:3598–3606. https://doi.org/10.1021/nn400576v

    Article  CAS  PubMed  Google Scholar 

  35. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Article  CAS  PubMed  Google Scholar 

  36. Ejigu A, Fujisawa K, Spencer BF, Wang B, Terrones M, Kinloch IA, Dryfe RAW (2018) On the role of transition metal salts during electrochemical exfoliation of graphite: antioxidants or metal oxide decorators for energy storage applications. Adv Funct Mater 28:1804357

    Article  Google Scholar 

  37. Yan R, Wang K, Wang C, Zhang H, Song Y, Guo Q, Wang J (2016) Synthesis and in-situ functionalization of graphene films through graphite charging in aqueous Fe2(SO4)3. Carbon 107:379–387

    Article  CAS  Google Scholar 

  38. Gylien O, Binkien R, Baranauskas M, Mordas G, Plauškaitė K, Ulevicius V (2014) Influence of dissolved oxygen on Fe(II) and Fe(III) sorption onto chitosan. Colloid Surface A 461:151–157

    Article  Google Scholar 

  39. Weißpflog J, Boldt R, Kohn B, Scheler U, Jehnichen D, Tyrpekl V, Schwarz S (2020) Investigation of mechanisms for simultaneous adsorption of iron and sulfate ions onto chitosan with formation of orthorhombic structures. Colloid Surface A 592:124575

    Article  Google Scholar 

  40. Sugii Y, Inada M, Yano H, Obora Y, Iwasaki Y, Arakawa R, Kawasaki H (2013) Single nanosized FeO nanocrystals with photoluminescence properties. J Nanopart Res 15:1379

    Article  Google Scholar 

  41. de Luna MS, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore GG, Castaldo R, Filippone G, Xia H, Ambrosio L (2019) Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohyd Polym 211:195–203

    Article  Google Scholar 

  42. Peng S, Huang Y, Ouyang S, Huang J, Shi Y, Tong YJ, Zhao X, Li N, Zheng J, Zheng J, Gong X, Xu J, Zhu F, Ouyang G (2022) Efficient solid phase microextraction of organic pollutants based on graphene oxide/chitosan aerogel. Anal Chim Acta 1195:339462

    Article  CAS  PubMed  Google Scholar 

  43. Ji K, Gao Y, Zhang L, Wang S, Yue Q, Xu X, Kong W, Gao B, Cai Z, Chen Y (2021) A tunable amphiphilic Enteromorpha-modified graphene aerogel for oil/water separation. Sci Total Environ 763:142958

    Article  CAS  PubMed  Google Scholar 

  44. Marnani NN, Shahbazi A (2019) A novel environmental-friendly nanobiocomposite synthesis by EDTA and chitosan functionalized magnetic graphene oxide for high removal of Rhodamine B: adsorption mechanism and separation property. Chemosphere 218:715–725

    Article  Google Scholar 

  45. Nascimento BF, Silva LFO, Araújo CMB, Silva Santos RK, Gomes BFML, Silva Santos PR, Cavalcanti JVFL, Dotto GL, Schnorr CE, Motta Sobrinho MA (2022) Synthesis and application of ferromagnetic graphene oxide nanocomposite as an effective adsorbent for Clonazepam: batch experiments, modeling, regeneration, and phytotoxicity. J Environ Chem Eng 10:108331

    Article  CAS  Google Scholar 

  46. Lv X, Tian D, Peng Y, Li J, Jiang G (2019) Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Appl Surf Sci 466:937–945

    Article  CAS  Google Scholar 

  47. Kumar R, Bhattacharya S, Sharma P (2021) Novel insights into adsorption of heavy metal ions using magnetic graphene composites. J Environ Chem Eng 9:106212

    Article  CAS  Google Scholar 

  48. Kang S, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW (2006) Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc 128:1042–1043

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Lei X, Zheng H, Jiang X, Zhang B, Zhang H, Lu C, Zhang Q (2021) Facile one-step synthesis of magnetic Zeolitic Imidazolate Framework for ultra fast removal of Congo red from water. Microporous Mesoporous Mater 311:110712

    Article  CAS  Google Scholar 

  50. Mensah K, Mahmoud H, Fujii M, Shokry H (2022) Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. J Water Process Eng 45:102512

    Article  Google Scholar 

  51. Liang H, Feng X, Zuo X, Zhu Z, Yang S, Zhu B, Wang W, Zhang J, Li G (2023) Facile fabrication of highly porous MgO-modified biochar derived from agricultural residue for efficient Cd(II) removal from wastewater. Inorg Chem Commun 154:110900

    Article  CAS  Google Scholar 

  52. Subramani BS, Shrihari S, Manu B, Babunarayan KS (2019) Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe(2+) ions from aqueous solutions. J Environ Manag 246:345–354

    Article  Google Scholar 

  53. Sharma P, Das MR (2013) Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 58:151–158

    Article  CAS  Google Scholar 

  54. Sahoo JK, Paikra SK, Mishra M, Sahoo H (2019) Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J Mol Liq 282:428–440

    Article  CAS  Google Scholar 

  55. Ali H, Ismail AM (2023) Fabrication of magnetic Fe3O4/Polypyrrole/Carbon black nanocomposite for effective uptake of Congo red and methylene blue dye: adsorption investigation and mechanism. J Polym Environ 31:976–998

    Article  CAS  Google Scholar 

  56. Li K, Li X, Li B (2022) Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions/cations in single and multicomponent systems. Sep Purif Technol 289:120737

    Article  CAS  Google Scholar 

  57. Xu W, Li Y, Wang H, Du Q, Li M, Sun Y, Cui M, Li L (2021) Study on the adsorption performance of casein/graphene oxide aerogel for methylene blue. ACS Omega 6:29243–29253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xue Z, Zhao S, Zhao Z, Li P, Gao J (2016) Thermodynamics of dye adsorption on electrochemically exfoliated graphene. J Mater Sci 51:4928–4941. https://doi.org/10.1007/s10853-016-9798-6

    Article  CAS  Google Scholar 

  59. Hui Y, Liu R, Li L, Sun Q, Xiao Z, Xu A, Liu S (2023) Magnetic hydroxyethyl cellulose spheres with efficient congo red removal. J Porous Mat 30:1735–1751

    Article  CAS  Google Scholar 

  60. Zhang Y, Zhang L, Wang N, Feng C, Zhang Q, Yu J, Jiao Y, Xu Y, Chen J (2023) Citric acid modified β-cyclodextrin for the synthesis of water-stable and recoverable CD-MOF with enhanced adsorption sites: efficient removal of Congo red and copper ions from wastewater. J Environ Chem Eng 11:111413

    Article  CAS  Google Scholar 

  61. Wang H, Luo W, Guo R, Li D, Xue B (2022) Effective adsorption of congo red dye by magnetic chitosan prepared by solvent-free ball milling. Mater Chem Phys 292:126857

    Article  CAS  Google Scholar 

  62. Rong Y, Huang Y, Jin P, Yang C, Zhong Z, Dong C, Liang W (2020) Highly efficient removal of cationic, anionic and neutral dyes by hierarchically porous structured three-dimensional magnetic sulfur/nitrogen co-doped reduced graphene oxide nanohybrid. J Water Process Eng 37:101345

    Article  Google Scholar 

  63. Dai J, Huang T, Tian SQ, Xiao YJ, Yang JH, Zhang N, Wang Y, Zhou ZW (2016) High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment. Mater Design 107:187–197

    Article  CAS  Google Scholar 

  64. Zhang J, Qin L, Yang Y, Liu X (2021) Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Sep Purif Technol 274:119029

    Article  CAS  Google Scholar 

  65. Barkauskas J, Dakševič J, Juškenas R, Mažeikiene R, Niaura G, Račiukaitis G, Selskis A, Stankevičiene I, Trusovas R (2012) Interaction between graphite oxide and Congo red in aqueous media. J Mater Sci 47:5852–5860. https://doi.org/10.1007/s10853-012-6485-0

    Article  CAS  Google Scholar 

  66. Jawad H, Sahu UK, Jani NA, AL Othman ZA, Wilson LD (2022) Magnetic crosslinked chitosan-tripolyphosphate/MgO/Fe3O4 nanocomposite for reactive blue 19 dye removal: optimization using desirability function approach. Surf Interfaces 28:101698

    Article  CAS  Google Scholar 

  67. Bo C, Jia Z, Liu B, Dai X, Ma G, Li Y (2022) Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem E 138:104499

    Article  CAS  Google Scholar 

  68. Tan Y, Huang W, Lei Q, Huang S, Yang K, Chen X, Li D (2023) Insight into the adsorption of magnetic microspheres with large mesopores: tailoring mesoporous structure and ethylenediamine functionalization for ultrahigh Congo red removal. Sep Purif Technol 311:123265

    Article  CAS  Google Scholar 

  69. Yan J, Li K (2021) A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep Purif Technol 277:119469

    Article  CAS  Google Scholar 

  70. Aoopngan C, Nonkumwong J, Phumying S, Promjantuek W, Maensiri S, Noisa P, Pinitsoontorn S, Ananta S, Srisombat L (2019) Amine-functionalized and hydroxyl-functionalized magnesium ferrite nanoparticles for Congo red adsorption. ACS Appl Nano Mater 2:5329–5341

    Article  CAS  Google Scholar 

  71. Lei C, Wen F, Chen J, Chen W, Huang Y, Wang B (2021) Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polymer 213:123316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Scientific Research Program of Liaoning Education Department (LJKZ1200, LJKZ1197), Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (ZJNK2108), Liaoning Provincial Engineering Research Center for High-Value Utilization of Magnesite (LMNKY202301), Regional Joint Fund of Liaoning Provincial Department of Science and Technology (2022-YKLH-06) and High-level talents program of YKIT (YJRC202102).

Author information

Authors and Affiliations

Authors

Contributions

ZX contributed to writing-original draft, investigation, conceptualization, supervision and funding acquisition. XD contributed to conceptualization, writing-review & editing, supervision and funding acquisition. HL contributed to experimental design and formal analysis. QC, JZ and GL contributed to material preparation and data collection. XZ contributed to formal analysis and investigation. GD contributed to investigation. SY contributed to writing-review & editing and supervision.

Corresponding authors

Correspondence to Xinzhong Deng or Sansan Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest financial or otherwise.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Deng, X., Liang, H. et al. A novel in-situ synthesis of magnetic graphene nanocomposites by Fe2(SO4)3 intercalation for removal of congo red from water: adsorption investigation and mechanism insights. J Mater Sci 59, 8235–8254 (2024). https://doi.org/10.1007/s10853-024-09691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09691-5

Navigation