Skip to main content
Log in

Transformation microstructure and nucleation crystallography in high Sc-contained Al–Sc alloys after laser treatment

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high Sc-alloyed Al–Sc sputtering target is applied to produce Sc-doped AlN (Al1−xScxN) thin films through reactive magnetron sputtering. The sputtering process demands Al–Sc sputtering targets with fine and stable grain sizes featuring random orientations. In this work, laser treatment with varying scanning speeds is applied to the Al-(10 at.%, 20 at.%) Sc alloys, and the microstructure is characterized using the electron backscatter diffraction (EBSD) method and transmission electron microscopy (TEM). The results indicate that the laser treatment enhances the solubility of Sc in the matrix; however, the nucleation crystallography during solidification differs among these alloys. Epitaxial growth is observed in Al–20Sc, remaining a large grain size with different scanning speeds. In contrast, Al–10Sc exhibits refined grain sizes, reduced to about 2 μm compared to 200 μm in the as-casted alloy. Laser treatment generates more than 40% twin boundaries, leading to the randomization of the texture and refinement of the grain size through twin variants. This study demonstrates the feasibility of grain boundary engineering for Al–10Sc sputtering targets through laser scanning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater 21:593. https://doi.org/10.1002/adma.200802611

    Article  CAS  PubMed  Google Scholar 

  2. Tasnadi F, Alling B, Höglund C et al (2010) Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys. Phy Rev Lett 104:137601. https://doi.org/10.1103/PhysRevLett.104.137601

    Article  CAS  Google Scholar 

  3. Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:162107. https://doi.org/10.1063/1.3251072

    Article  Google Scholar 

  4. Piazza G, Felmetsger V, Muralt P, Olsson RH III, Ruby R (2012) Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull 37:1051. https://doi.org/10.1557/mrs.2012.268

    Article  CAS  Google Scholar 

  5. Akiyama M, Tabaru T, Nishikubo K, Teshigahara A, Kano K (2010) Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments. J Ceram Soc Jpn 118:1166. https://doi.org/10.2109/jcersj2.118.1166

    Article  CAS  Google Scholar 

  6. Yasuoka S, Shimizu T, Tateyama A et al (2020) Effects of deposition conditions on the ferroelectric properties of (Al1−xScx) N thin films. J Appl Phys 128:114103. https://doi.org/10.1063/5.0015281

    Article  CAS  Google Scholar 

  7. Wall J, Yan F (2023) Sputtering process of ScxAl1-xN thin films for ferroelectric applications. Coatings 13:54. https://doi.org/10.3390/coatings13010054

    Article  CAS  Google Scholar 

  8. Gschneidner K, Calderwood F (1989) The Al–Sc (aluminum-scandium) system. Bulletin of Alloy Phase Diagrams 10:34. https://doi.org/10.1007/BF02881486

    Article  CAS  Google Scholar 

  9. Wang X, Wang Y, Jia Q, Ding Z, He J, Hui S (2023) Novel twinned Al3Sc dendrites in as-casted Al–Sc alloy. Rare Met 42:838–843. https://doi.org/10.1007/s12598-023-02276-2

    Article  CAS  Google Scholar 

  10. Trdan U, Skarba M, Grum J (2014) Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy. Mater Charact 97:57. https://doi.org/10.1016/j.matchar.2014.08.020

    Article  CAS  Google Scholar 

  11. Lou S, Li Y, Zhou L, Nie X, He G, He W (2016) Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing. Mater Des 104:320. https://doi.org/10.1016/j.matdes.2016.05.028

    Article  CAS  Google Scholar 

  12. Zhang J, Song B, Wei Q, Bourell D, Shi Y (2019) A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35:270. https://doi.org/10.1016/j.jmst.2018.09.004

    Article  CAS  Google Scholar 

  13. Pinto M, Cheung N, Ierardi M, Garcia A (2003) Microstructural and hardness investigation of an aluminum–copper alloy processed by laser surface melting. Mater Charact 50:249. https://doi.org/10.1016/S1044-5803(03)00091-3

    Article  CAS  Google Scholar 

  14. You M, Li S, Shi Z (2022) Significant hardness improvement of a low-density Al-Si-Mg-Li-Fe alloy through laser-aging surface treatment. Mater Today Commun 32:104000. https://doi.org/10.1016/j.mtcomm.2022.104000

    Article  CAS  Google Scholar 

  15. Aboulkhair N, Everitt N, Maskery I, Ashcroft I, Tuck C (2017) Selective laser melting of aluminum alloys. MRS Bull 42:311. https://doi.org/10.1557/mrs.2017.63

    Article  CAS  Google Scholar 

  16. Koutny D, Skulina D, Pantělejev L et al (2018) Processing of Al–Sc aluminum alloy using SLM technology. Procedia Cirp 74:44. https://doi.org/10.1016/j.procir.2018.08.027

    Article  Google Scholar 

  17. Jia Q, Zhang F, Rometsch P et al (2020) Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting. Acta Mater 193:239. https://doi.org/10.1016/j.actamat.2020.04.015

    Article  CAS  Google Scholar 

  18. Schliephake D, Lopes C, Eggeler Y et al (2022) Improved work hardening capability and ductility of an additively manufactured and deformed Al-Mn-Mg-Sc-Zr alloy. J Alloy Compd 924:166499. https://doi.org/10.1016/j.jallcom.2022.166499

    Article  CAS  Google Scholar 

  19. Yang X, Cai R, Chen C et al (2022) High-performance aluminum alloy with fully equiaxed grain microstructure fabricated by laser metal deposition. J Mater Res 37:3658. https://doi.org/10.1557/s43578-022-00738-4

    Article  CAS  Google Scholar 

  20. Kuo C, Peng P (2023) The strengthening mechanism synergy of heat-treated 3D printed Al–Sc alloy. Virtual and Physical Prototyping 18:e2166539. https://doi.org/10.1080/17452759.2023.2166539

    Article  Google Scholar 

  21. Gu X, Furuhara T, Zhang W (2016) PTCLab: free and open-source software for calculating phase transformation crystallography. J Appl Crystallogr 49:1099. https://doi.org/10.1107/S1600576716006075

    Article  CAS  Google Scholar 

  22. Zhao Y, Zhang W, Koe B, et al. (2019) 3D characterization of the primary Al3Sc phases in an Al–Sc alloy using Synchrotron X-ray tomography and electron microscopy. arXiv preprint arXiv:1909.09388. Doi: https://doi.org/10.48550/arXiv.1909.09388

  23. Marquis E, Seidman D (2001) Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys. Acta Mater 49:1909. https://doi.org/10.1016/S1359-6454(01)00116-1

    Article  CAS  Google Scholar 

  24. Brandon D (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479. https://doi.org/10.1016/0001-6160(66)90168-4

    Article  CAS  Google Scholar 

  25. Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095. https://doi.org/10.1007/s10853-011-5393-z

    Article  CAS  Google Scholar 

  26. Du A, Wang W, Gu X et al (2021) The dependence of precipitate morphology on the grain boundary types in an aged Al–Cu binary alloy. J Mater Sci 56:781. https://doi.org/10.1007/s10853-020-05239-5

    Article  CAS  Google Scholar 

  27. Porter D, Easterling K (2009) Phase transformations in metals and alloys (revised reprint). CRC Press

    Book  Google Scholar 

  28. Hyde K, Norman A, Prangnell P (2001) The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys. Acta Mater 49:1327. https://doi.org/10.1016/S1359-6454(01)00050-7

    Article  CAS  Google Scholar 

  29. Fukunaga K, Shouji T, Miura Y (1997) Temperature dependence of dislocation structure of L12–Al3Sc. Mater Sci Eng A 239–240:202. https://doi.org/10.1016/S0921-5093(97)00582-0

    Article  Google Scholar 

  30. Turchin A, Zuijderwijk M, Pool J, Eskin D, Katgerman L (2007) Feathery grain growth during solidification under forced flow conditions. Acta Mater 55:3795. https://doi.org/10.1016/j.actamat.2007.02.030

    Article  CAS  Google Scholar 

  31. Henry S, Rappaz M, Jarry P (1998) <110> dendrite growth in aluminum feathery grains. Metall Mater Trans A 29:2807. https://doi.org/10.1007/s11661-998-0321-9

    Article  Google Scholar 

  32. Henry S, Gruen G, Rappaz M (2004) Influence of convection on feathery grain formation in aluminum alloys. Metall Mater Trans A 35:2495. https://doi.org/10.1007/s11661-006-0229-1

    Article  Google Scholar 

  33. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phy Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  34. Tschopp M, McDowell D (2007) Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag 87:3871. https://doi.org/10.1080/14786430701455321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB3504403).

Author information

Authors and Affiliations

Authors

Contributions

He Jinjiang contributed to conceptualization, investigation, and draft preparation. Jia Qian contributed to experiment on laser treatment and data analysis. Wang Xingquan, Cao Xiaomeng, and Cao Ziqi contributed to data curation and visualization. Ding Zhaochong contributed to the casted alloy preparation. Xinfu Gu contributed to conceptualization, supervision, and data analysis. All authors were involved in writing and reviewing the manuscript.

Corresponding authors

Correspondence to He Jinjiang or Gu Xinfu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that no experiments were involved with human tissue.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinjiang, H., Qian, J., Xingquan, W. et al. Transformation microstructure and nucleation crystallography in high Sc-contained Al–Sc alloys after laser treatment. J Mater Sci 59, 7075–7088 (2024). https://doi.org/10.1007/s10853-024-09576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09576-7

Navigation