Skip to main content
Log in

Large strain improvement of lead-free (1−x) Bi0.5Na0.42K0.08Zr0.02Ti0.98O3xBa(Nb0.5Fe0.5)O3 piezoelectric ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the past decade, great focus has been devoted to the possibility of employing electric fields to induce extremely large strains in Pb-free materials. In the present investigation, lead-free 1−x(Bi0.5Na0.42K0.08)Zr0.02Ti0.98O3xBa(Nb0.5Fe0.5)O3 or (1−x)BNKZTO–xBNFO ceramics where x = 0, 0.005, 0.010, or 0.015 were prepared via a solid-state reaction. An enhanced strain was achieved by doping a suitable amount of BNFO into BNKZTO, resulting in phase formation and microstructural changes that affect electrical properties, such as dielectric, ferroelectric, and electric field-induced strain (S‒E) behavior. X-ray diffraction analysis revealed both rhombohedral (R) and tetragonal (T) phases in all of the analyzed ceramic samples. The (1–x)BNKZTO-xBNFO binary system ceramics show remarkable strain coefficients at ambient temperature, exhibiting a maximum strain of 0.42% when given an electric field of 60 kV/cm and a normalized strain coefficient (d*33 = Smax/Emax = 700 pm/V).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Manotham S, Butnoi P, Jaita P et al (2020) Role of ZnO nanoparticle doping on depolarization temperature, piezoelectric and energy harvesting properties of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics. Mater Res Bull 128:110859. https://doi.org/10.1016/j.materresbull.2020.110859

    Article  CAS  Google Scholar 

  2. Shin D-J, Jeong S-J, Seo C-E et al (2015) Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators. Ceram Int 41:S686–S690. https://doi.org/10.1016/j.ceramint.2015.03.180

    Article  CAS  Google Scholar 

  3. Chen X, Yan X, Li X et al (2018) Excellent temperature stability on relative permittivity, and conductivity behavior of K0.5Na0.5NbO3 based lead free ceramics. J Alloys Compd 762:697–705. https://doi.org/10.1016/j.jallcom.2018.05.166

    Article  CAS  Google Scholar 

  4. Tong X-Y, Yang Y-T, Song M-W et al (2020) Energy-storage properties of low-temperature Co-fired BNT-ST/AgPd multilayer lead-free ceramic capacitors. J Alloys Compd 827:154260. https://doi.org/10.1016/j.jallcom.2020.154260

    Article  CAS  Google Scholar 

  5. Ma J-P, Chen X-M, Ouyang W-Q et al (2018) Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram Int 44:4436–4441. https://doi.org/10.1016/j.ceramint.2017.12.044

    Article  CAS  Google Scholar 

  6. Zheng L, Niu Z, Zheng P et al (2022) Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi0.5K0.5TiO3-based ceramics. Mater Today Energy 28:101078. https://doi.org/10.1016/j.mtener.2022.101078

    Article  CAS  Google Scholar 

  7. Lan J, Chen X, Liu L et al (2023) Low-temperature synthesis of K0.5Na0.5NbO3 ceramics in a wide temperature window via cold-sintering assisted sintering method and enhanced electrical properties. J Eur Ceram Soc 43:73–81. https://doi.org/10.1016/j.jeurceramsoc.2022.09.041

    Article  CAS  Google Scholar 

  8. Ramesh S, Ravinder D, Naidu KCB et al (2019) A review on giant piezoelectric coefficient, materials and applications. Biointerface Res Appl Chem 9:4205–4216. https://doi.org/10.33263/BRIAC95.205216

    Article  CAS  Google Scholar 

  9. Jaita P, Butnoi P, Sanjoom R et al (2017) Electric field-induced strain response of lead-free Fe2O3 nanoparticles-modified Bi0.5(Na0.80K0.20)0.5TiO3–0.03(Ba0.70Sr0.03)TiO3 piezoelectric ceramics. Ceram Int 43:S2–S9. https://doi.org/10.1016/j.ceramint.2017.05.193

    Article  CAS  Google Scholar 

  10. Tokay O, Yazıcı M (2022) A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics. Mater Today Commun 31:103358. https://doi.org/10.1016/j.mtcomm.2022.103358

    Article  CAS  Google Scholar 

  11. Zhu W, Shen Z-Y, Deng W et al (2023) A review: (Bi, Na)TiO3 (BNT)-based energy storage ceramics. J Mater 10:86–123. https://doi.org/10.1016/j.jmat.2023.05.002

    Article  Google Scholar 

  12. Zhang A, Chu R, Lu G et al (2023) Electrical, luminescent properties and electronic structure of (Ho, Nb) co-doped BNT-based multifunctional ceramics. Ceram Int 49:20799–20807. https://doi.org/10.1016/j.ceramint.2023.03.212

    Article  CAS  Google Scholar 

  13. Deng A, Wu J (2022) Enhanced strain and electrostrictive properties in lead-free BNT-based ceramics via rare earth doping. J Mater 8:401–407. https://doi.org/10.1016/j.jmat.2021.08.002

    Article  Google Scholar 

  14. Zhou C, Liu X, Li W, Yuan C (2009) Structure and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Mater Chem Phys 114:832–836. https://doi.org/10.1016/j.matchemphys.2008.10.063

    Article  CAS  Google Scholar 

  15. Li W, Xu Z, Chu R et al (2011) Synthesis and characterization of (Na0.85K0.15)0.5Bi0.5TiO3 ceramics by different methods. Mater Res Bull 46:871–874. https://doi.org/10.1016/j.materresbull.2011.02.014

    Article  CAS  Google Scholar 

  16. Chauhan V, Ghosh SK, Hussain A, Rout SK (2016) Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics. J Alloys Compd 674:413–424. https://doi.org/10.1016/j.jallcom.2016.02.231

    Article  CAS  Google Scholar 

  17. Zhao W, Zhou H, Yan Y (2008) Preparation and characterization of textured Bi0.5(Na0.8 K0.2)0.5TiO3 ceramics by reactive templated grain growth. Mater Lett 62:1219–1222. https://doi.org/10.1016/j.matlet.2007.08.016

    Article  CAS  Google Scholar 

  18. Malik RA, Hussain A, Maqbool A et al (2015) Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848. https://doi.org/10.1111/jace.13722

    Article  CAS  Google Scholar 

  19. Rödel J, Li J-F (2018) Lead-free piezoceramics: status and perspectives. MRS Bull 43:576–580. https://doi.org/10.1557/mrs.2018.181

    Article  CAS  Google Scholar 

  20. Hussain A, Ahn CW, Lee JS et al (2010) Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens Actuators A Phys 158:84–89. https://doi.org/10.1016/j.sna.2009.12.027

    Article  CAS  Google Scholar 

  21. Butnoi P, Manotham S, Jaita P et al (2018) High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr. J Eur Ceram Soc 38:3822–3832. https://doi.org/10.1016/j.jeurceramsoc.2018.04.024

    Article  CAS  Google Scholar 

  22. Cho SY, Kim E-Y, Kim H et al (2022) Lead-free Bi0.5(Na1-xKx)0.5TiO3 relaxor ferroelectric ceramics for a wearable energy harvester. Ceram Int 48:6917–6922. https://doi.org/10.1016/j.ceramint.2021.11.247

    Article  CAS  Google Scholar 

  23. Sumang R, Bongkarn T, Kumar N, Kamnoy M (2017) Investigation of a new lead-free (1–x-y)BNT-xBKT-yBZT piezoelectric ceramics. Ceram Int 43:S102–S109. https://doi.org/10.1016/j.ceramint.2017.05.239

    Article  CAS  Google Scholar 

  24. Jin L, Luo W, Wang L et al (2019) High thermal stability of electric field-induced strain in (1−x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. J Eur Ceram Soc 39:277–286. https://doi.org/10.1016/j.jeurceramsoc.2018.09.019

    Article  CAS  Google Scholar 

  25. Li Q, Ning L, Wang C, Fan H (2021) Gaint electric field-induced strain and ferroelectric behavior of Bi0.5Na0.4K0.1TiO3-Na1xLixNbO3 lead-free ceramics. Mater Sci Eng B 263:114819. https://doi.org/10.1016/j.mseb.2020.114819

    Article  CAS  Google Scholar 

  26. Mostovych N, Won SS, Kim IW et al (2020) Understanding the large strain behavior in the lead-free doped Bi1/2(Na0.78K0.22)1/2TiO3–BiMg1/2Ti1/2O3 (BNKT-BMT) piezoelectric system. AIP Adv 10:45033. https://doi.org/10.1063/1.5143947

    Article  CAS  Google Scholar 

  27. Feng J, Huang R, Liang Z et al (2022) The effect of B site doping of Nb5+ and aging process on the properties of BNKT-BT lead-free piezoelectric ceramics. Ceram Int 48:2355–2361. https://doi.org/10.1016/j.ceramint.2021.10.015

    Article  CAS  Google Scholar 

  28. Pham K-N, Hussain A, Ahn CW et al (2010) Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater Lett 64:2219–2222. https://doi.org/10.1016/j.matlet.2010.07.048

    Article  CAS  Google Scholar 

  29. Maqbool A, Hussain A, Ur Rahman J et al (2014) Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics. Ceram Int 40:11905–11914. https://doi.org/10.1016/j.ceramint.2014.04.026

    Article  CAS  Google Scholar 

  30. Yang D, Bin KS, Lim J-H et al (2017) Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Met Mater Int 23:1045–1049. https://doi.org/10.1007/s12540-017-7019-8

    Article  CAS  Google Scholar 

  31. Wang G, Lu Z, Li Y et al (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 121:6124–6172. https://doi.org/10.1021/acs.chemrev.0c01264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Supriya S (2022) A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance. J Inorg Organomet Polym Mater 32:3659–3676. https://doi.org/10.1007/s10904-022-02418-6

    Article  CAS  Google Scholar 

  33. Patel PK, Yadav KL, Singh H, Yadav AK (2014) Origin of giant dielectric constant and magnetodielectric study in Ba(Fe0.5Nb0.5)O3 nanoceramics. J Alloys Compd 591:224–229. https://doi.org/10.1016/j.jallcom.2013.12.119

    Article  CAS  Google Scholar 

  34. Wang Z, Zhang LL, Pu YP (2014) Ba0.4Sr0.6(Fe0.5Nb0.5)O3 ceramics with extended giant dielectric constant step and reduced dielectric loss. J Alloys Compd 586:420–425. https://doi.org/10.1016/j.jallcom.2013.10.088

    Article  CAS  Google Scholar 

  35. Eatemadi R, Balak Z (2019) Investigating the effect of SPS parameters on densification and fracture toughness of ZrB2-SiC nanocomposite. Ceram Int 45:4763–4770. https://doi.org/10.1016/j.ceramint.2018.11.169

    Article  CAS  Google Scholar 

  36. Ullah A, Ahn CW, Hussain A et al (2011) Effect of potassium concentration on the structure and electrical properties of lead-free Bi0.5(Na, K)0.5TiO3–BiAlO3 piezoelectric ceramics. J Alloys Compd 509:3148–3154. https://doi.org/10.1016/j.jallcom.2010.12.027

    Article  CAS  Google Scholar 

  37. Manotham S, Butnoi P, Jaita P et al (2018) Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics. J Alloys Compd 739:457–467. https://doi.org/10.1016/j.jallcom.2017.12.175

    Article  CAS  Google Scholar 

  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  39. Gupta SK, Gibbons BJ, Mardilovich P, Cann DP (2021) Influence of A-site non-stoichiometry on electromechanical properties of Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics. J Mater Sci 56:231–242. https://doi.org/10.1007/s10853-020-05220-2

    Article  CAS  Google Scholar 

  40. Malik RA, Hussain A, Zaman A et al (2015) Structure–property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv 5:96953–96964. https://doi.org/10.1039/C5RA19107F

    Article  CAS  Google Scholar 

  41. Hao J, Shen B, Zhai J, Chen H (2014) Effect of BiMeO3 on the phase structure, ferroelectric stability, and properties of lead-free Bi0.5(Na0.80K0.20)0.5TiO3 ceramics. J Am Ceram Soc 97:1776–1784. https://doi.org/10.1111/jace.12820

    Article  CAS  Google Scholar 

  42. Liu X, Xue S, Ma J et al (2018) Electric-field-induced local distortion and large electrostrictive effects in lead-free NBT-based relaxor ferroelectrics. J Eur Ceram Soc 38:4631–4639. https://doi.org/10.1016/j.jeurceramsoc.2018.06.023

    Article  CAS  Google Scholar 

  43. Liu G, Fan H, Shi J, Liu Z (2016) Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram Int 42:3938–3946. https://doi.org/10.1016/j.ceramint.2015.11.062

    Article  CAS  Google Scholar 

  44. Jaita P, Sanjoom R, Rujijanagul G (2023) Enhanced electro-strain with high electrostrictive performances of Bi0.5Na0.4K0.1TiO3 based lead-free piezoelectric ceramics by Ba(Fe0.5Nb0.5)O3. Mater Res Bull 167:112417. https://doi.org/10.1016/j.materresbull.2023.112417

    Article  CAS  Google Scholar 

  45. Obilor U, Pascual-Gonzalez C, Murakami S et al (2018) Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics. Mater Res Bull 97:385–392. https://doi.org/10.1016/j.materresbull.2017.09.032

    Article  CAS  Google Scholar 

  46. Manotham S, Butnoi P, Jaita P et al (2018) Large electric field induced strain and large improvement in energy density of bismuth sodium potassium titanate based piezoelectric ceramics. J Alloys Compd 739:457–467. https://doi.org/10.1016/j.jallcom.2017.12.175

    Article  CAS  Google Scholar 

  47. Jaita P, Butnoi P, Sanjoom R et al (2017) Electric field-induced strain response of lead-free Fe2O3 nanoparticles-modified Bi0.5(Na0.80K0.20)0.5TiO3-0.03(Ba0.70Sr0.03)TiO3 piezoelectric ceramics. Ceram Int 43:S2–S9. https://doi.org/10.1016/j.ceramint.2017.05.193

    Article  CAS  Google Scholar 

  48. Vuong LD, Gio PD (2020) Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3- modified Bi0.5(Na0.4K0.1)TiO3 lead-free ceramics. J Alloys Compd 817:152790. https://doi.org/10.1016/j.jallcom.2019.152790

    Article  CAS  Google Scholar 

  49. Ullah A, Gul HB, Ullah A et al (2018) Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning. APL Mater 6:16104. https://doi.org/10.1063/1.5006732

    Article  CAS  Google Scholar 

  50. Hao J, Bai W, Li W et al (2013) Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J Appl Phys 114:44103. https://doi.org/10.1063/1.4816047

    Article  CAS  Google Scholar 

  51. Jing R, Zhang L, Hu Q et al (2022) Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. J Mater 8:335–346. https://doi.org/10.1016/j.jmat.2021.09.002

    Article  Google Scholar 

  52. Dul’kin E, Tiagunova J, Mojaev E, Roth M (2017) Peculiar properties of phase transitions in Na0.5Bi0.5TiO3−0.06BaTiO3 lead-free relaxor ferroelectrics seen via acoustic emission. Funct Mater Lett 10:1750048. https://doi.org/10.1142/S1793604717500485

    Article  CAS  Google Scholar 

  53. Dong G, Fan H, Shi J, Li M (2015) Composition- and temperature-dependent large strain in (1–x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)– xNaNbO3 ceramics. J Am Ceram Soc 98:1150–1155. https://doi.org/10.1111/jace.13407

    Article  CAS  Google Scholar 

  54. Shiqi Z, Qiang L, Qian L et al (2023) Large electrostrain at high temperature in bismuth sodium titanate-based piezoelectric ceramics. Ceram Int 49:32642–32651. https://doi.org/10.1016/j.ceramint.2023.07.233

    Article  CAS  Google Scholar 

  55. Wei X, Feng Y, Wan X, Yao X (2004) Evolvement of dielectric relaxation of barium stannate titanate ceramics. Ceram Int 30:1397–1400. https://doi.org/10.1016/j.ceramint.2003.12.088

    Article  CAS  Google Scholar 

  56. Hussain A, Zaman A, Iqbal Y, Kim MH (2013) Dielectric, ferroelectric and field induced strain properties of Nb-modified Pb-free 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 ceramics. J Alloys Compd 574:320–324. https://doi.org/10.1016/j.jallcom.2013.05.140

    Article  CAS  Google Scholar 

  57. Hua Q, Ren P, Wang J et al (2021) Quenching-induced nonergodicity in ergodic Na1/2Bi1/2TiO3–BaTiO3–AgNbO3 ceramics. J Mater Sci 56:18430–18439. https://doi.org/10.1007/s10853-021-06553-2

    Article  CAS  Google Scholar 

  58. Lee K-T, Park J-S, Cho J-H et al (2015) Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Ceram Int 41:10298–10303. https://doi.org/10.1016/j.ceramint.2015.04.063

    Article  CAS  Google Scholar 

  59. Chen J, Wang Y, Zhang Y et al (2017) Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J Eur Ceram Soc 37:2365–2371. https://doi.org/10.1016/j.jeurceramsoc.2017.02.009

    Article  CAS  Google Scholar 

  60. Yu Z, Liu Y, Shen M et al (2017) Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram Int 43:7653–7659. https://doi.org/10.1016/j.ceramint.2017.03.062

    Article  CAS  Google Scholar 

  61. Pu Y, Yao M, Zhang L, Jing P (2016) High energy storage density of 0.55Bi0.5Na0.5TiO3–0.45Ba0.85Ca0.15Ti0.9xZr0.1SnxO3 ceramics. J Alloys Compd 687:689–695. https://doi.org/10.1016/j.jallcom.2016.06.181

    Article  CAS  Google Scholar 

  62. Chalfouh C, Lahmar A, Abdelmoula N, Khemakhem H (2017) Structural and dielectrics properties of Pr3+ doped BaTi0.925(Yb0.5Nb0.5)0.075O3 ceramics. J Alloys Compd 729:858–865. https://doi.org/10.1016/j.jallcom.2017.09.208

    Article  CAS  Google Scholar 

  63. Zhou Q, Zhou C, Yang H et al (2010) Dielectric properties and depolarization temperature of Bi0.5(Na, K)0.5TiO3–BiFeO3 lead-free ceramics. Phys B Condens Matter 405:613–618. https://doi.org/10.1016/j.physb.2009.09.075

    Article  CAS  Google Scholar 

  64. Manotham S, Jaita P, Butnoi P et al (2022) Improvements of depolarization temperature, piezoelectric and energy harvesting properties of BNT-based ceramics by doping an interstitial dopant. J Alloys Compd 897:163021. https://doi.org/10.1016/j.jallcom.2021.163021

    Article  CAS  Google Scholar 

  65. Malik RA, Hussain A, Maqbool A et al (2016) Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J Alloys Compd 682:302–310. https://doi.org/10.1016/j.jallcom.2016.04.297

    Article  CAS  Google Scholar 

  66. Kumar N, Cann DP (2013) Electromechanical strain and bipolar fatigue in Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 ceramics. J Appl Phys 114:54102. https://doi.org/10.1063/1.4817524

    Article  CAS  Google Scholar 

  67. Huo Z, Xie H, Xu J et al (2020) Tailoring the structure, energy storage, strain, and dielectric properties of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics by (Fe1/4Sc1/4Nb1/2)4+ multiple complex ions. Front Mater 7:1–8. https://doi.org/10.3389/fmats.2020.00008

    Article  CAS  Google Scholar 

  68. Fan P, Zhang Y, Xie B et al (2018) Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2 (Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram Int 44:3211–3217. https://doi.org/10.1016/j.ceramint.2017.11.092

    Article  CAS  Google Scholar 

  69. Hussain A, Ahn CW, Ullah A et al (2010) Effects of hafnium substitution on dielectric and electromechanical properties of lead-free Bi0.5(Na0.78K0.22)0.5(Ti1xHfx)O3 ceramics. Jpn J Appl Phys 49:41504. https://doi.org/10.1143/JJAP.49.041504

    Article  CAS  Google Scholar 

  70. Xu Q, Li T, Hao H et al (2015) Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J Eur Ceram Soc 35:545–553. https://doi.org/10.1016/j.jeurceramsoc.2014.09.003

    Article  CAS  Google Scholar 

  71. Hussain A, Rahman JU, Zaman A et al (2014) Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics. Mater Chem Phys 143:1282–1288. https://doi.org/10.1016/j.matchemphys.2013.11.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by National Research Council of Thailand (NRCT 662505011630), the Research Development Institute (RDI), Department of Metallurgical Technology, Faculty of Technical Education, Rajamangala University of Technology Krungthep (RMUTK), Thailand.

Author information

Authors and Affiliations

Authors

Contributions

SM was involved in conceptualization, experiments, formal analysis, and writing–original draft. PB contributed to investigation, characterization, writing–review and editing, supervision.

Corresponding author

Correspondence to Pichitchai Butnoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manotham, S., Butnoi, P. Large strain improvement of lead-free (1−x) Bi0.5Na0.42K0.08Zr0.02Ti0.98O3xBa(Nb0.5Fe0.5)O3 piezoelectric ceramics. J Mater Sci 59, 5330–5344 (2024). https://doi.org/10.1007/s10853-024-09482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09482-y

Navigation