Skip to main content
Log in

Phase structure and electrical properties of lead-free (1 − 2x)NBT–xKBT–xBT ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The research on Na0.5Bi0.5TiO3 based lead-free piezoelectric ceramics attracted widely attention during last decades. However, the electrical performance is still much inferior to that of lead-based counterparts, which limits its practical applications. Based on this situation, a ternary system of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 [(1 − 2x)NBT–xKBT–xBT] is constructed in this work, hoping to further improve its piezoelectric response. The ceramics were fabricated by the traditional solid state reaction approach, and their structure and electrical performance were studied systematically. Excellent piezoelectric properties with d33 = 146 and kp = 26.5% were obtained at x = 0.08, which was supposed to be related with the coexistence of tetragonal and rhombohedral phases and appropriate grain size. Besides these, a relatively high dielectric constant (εr = 2250), a high remnant polarization (Pr = 31.5 µC/cm2) and low coercive field (Ec = 1.54 kV/mm) were also obtained at this composition. This work provides a new paradigm for the further optimization of NBT–KBT–BT based lead-free piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.K. Acharya, S.-K. Lee, J.-H. Hyung, Y.-H. Yang, B.-H. Kim, B.-G. Ahn, Ferroelectric and piezoelectric properties of lead-free BaTiO3 doped Bi0.5Na0.5TiO3 thin films from metal-organic solution deposition. J. Alloys Compd. 540, 204–209 (2012)

    Article  CAS  Google Scholar 

  2. Y. Zhang, W. Zhu, C.K. Jeong, H. Sun, G. Yang, W. Chen, Q. Wang, A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502–32507 (2017)

    Article  CAS  Google Scholar 

  3. Y. Zhang, H. Sun, W. Chen, A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J. Phys. Chem. Solids 114, 207–219 (2018)

    Article  CAS  Google Scholar 

  4. C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang, K.-I. Park, J. Ryu, H. Sohn, Y.C. Chung, K.J. Lee, Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017)

    Article  CAS  Google Scholar 

  5. G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek, D.Y. Park, D.H. Kim, J.H. Park, C.K. Jeong, K.-I. Park, J.J. Choi, D.K. Kim, J. Ryu, K.J. Lee, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016)

    Article  Google Scholar 

  6. D.H. Kim, H.J. Shin, H. Lee, C.K. Jeong, H. Park, G.-T. Hwang, H.-Y. Lee, D.J. Joe, J.H. Han, S.H. Lee, J. Kim, B. Joung, K.J. Lee, In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 27, 1700341 (2017)

    Article  Google Scholar 

  7. K.-I. Park, C.K. Jeong, N.K. Kim, K.J. Lee, Stretchable piezoelectric nanocomposite generator. Nano Converg. 3, 12 (2016)

    Article  Google Scholar 

  8. H. Sun, Y. Zhang, X. Liu, Y. Liu, S. Guo, W. Chen, Effects of cobalt and sintering temperature on electrical properties of Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 25, 3962–3966 (2014)

    CAS  Google Scholar 

  9. T.R. Shrout, S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)

    Article  Google Scholar 

  10. S. Zhang, N. Kim, T.R. Shrout, M. Kimura, A. Ando, High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics. Solid State Commun. 140, 154–158 (2006)

    Article  CAS  Google Scholar 

  11. Z.-G. Gai, J.-F. Wang, M.-L. Zhao, C.-M. Wang, G.-Z. Zang, B.-Q. Ming, P. Qi, S. Zhang, T.R. Shrout, High temperature (NaBi)(0.48)square 0.04Bi2Nb2O9-based piezoelectric ceramics. Appl. Phys. Lett. 89, 012907 (2006)

    Article  Google Scholar 

  12. C. Baek, J.H. Yun, J.E. Wang, C.K. Jeong, K.J. Lee, K.-I. Park, D.K. Kim, A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle–polymer composite. Nanoscale 8, 17632–17638 (2016)

    Article  CAS  Google Scholar 

  13. Y. Zhang, H.J. Sun, W. Chen, Y. Li, Modification of the structure and electrical properties of Ba0.95Ca0.05Zr0.1Ti0.9O3 ceramics by the doping of Mn ions. J. Mater. Sci.: Mater. Electron. 26, 10034–10043 (2015)

    CAS  Google Scholar 

  14. Y. Zhang, H.-J. Sun, W. Chen, Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity. J. Alloys Compd. 694, 745–751 (2017)

    Article  CAS  Google Scholar 

  15. Y. Zhang, H. Sun, W. Chen, Improved electrical properties of low-temperature sintered Cu doped Ba0.99Ca0.01Zr0.02Ti0.98O3 ceramics. J. Electron. Mater. 45, 5006–5016 (2016)

    Article  CAS  Google Scholar 

  16. H. Sun, Y. Zhang, X. Liu, Y. Liu, W. Chen, Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. Ceram. Int. 41, 555–565 (2015)

    Article  CAS  Google Scholar 

  17. M.B. Ghasemian, Q. Lin, E. Adabifiroozjaei, F. Wang, D. Chu, D. Wang, Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Adv. 7, 15020–15026 (2017)

    Article  CAS  Google Scholar 

  18. S. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 910–917 (2007)

    Article  Google Scholar 

  19. H.J. Lee, S.O. Ural, L. Chen, K. Uchino, S. Zhang, High power characteristics of lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3383–3386 (2012)

    Article  CAS  Google Scholar 

  20. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  21. J.-F. Li, K. Wang, B.-P. Zhang, L.-M. Zhang, Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 706–709 (2006)

    Article  CAS  Google Scholar 

  22. J. Wu, D. Xiao, Y. Wang, J. Zhu, L. Wu, Y. Jiang, Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96–xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett. 91, 252907 (2007)

    Article  Google Scholar 

  23. C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang, B. Joung, S.-G. Kim, H.J. Shin, I.-S. Kang, J. Ryu, K.J. Lee, Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 074102 (2017)

    Article  Google Scholar 

  24. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  25. T. Takenaka, K.-I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  CAS  Google Scholar 

  26. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)

    Article  CAS  Google Scholar 

  27. Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics. Mater. Lett. 59, 1361–1364 (2005)

    Article  CAS  Google Scholar 

  28. Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics. Mater. Chem. Phys. 94, 328–332 (2005)

    Article  CAS  Google Scholar 

  29. W. Chen, Y. Li, Q. Xu, J. Zhou, Electromechanical properties and morphotropic phase boundary of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Electroceram. 15, 229–235 (2005)

    Article  CAS  Google Scholar 

  30. P. Marchet, E. Boucher, V. Dorcet, J. Mercurio, Dielectric properties of some low-lead or lead-free perovskite-derived materials: Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 ceramics. J. Eur. Ceram. Soc. 26, 3037–3041 (2006)

    Article  CAS  Google Scholar 

  31. L. Luo, X. Jiang, Y. Zhang, K. Li, Electrocaloric effect and pyroelectric energy harvesting of (0.94 – x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 2803–2812 (2017)

    Article  CAS  Google Scholar 

  32. H. Yu, Z.-G. Ye, Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1 – x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution. Appl. Phys. Lett. 93, 112902 (2008)

    Article  Google Scholar 

  33. Q. Xu, X. Chen, W. Chen, S. Chen, B. Kim, J. Lee, Synthesis, ferroelectric and piezoelectric properties of some (Na0.5Bi0.5)TiO3 system compositions. Mater. Lett. 59, 2437–2441 (2005)

    Article  CAS  Google Scholar 

  34. M. Saleem, I.-S. Kim, M.-S. Kim, S.A. Pervez, U. Farooq, M.Z. Khan, A. Yaqoob, S.-J. Jeong, Electromechanical properties of Nb doped 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 ceramic. RSC Adv. 6, 89210–89220 (2016)

    Article  CAS  Google Scholar 

  35. E.V. Ramana, S.V. Suryanarayana, T.B. Sankaram, Synthesis and magnetoelectric studies on Na0.5Bi0.5TiO3–BiFeO3 solid solution ceramics. Solid State Sci. 12, 956–962 (2010)

    Article  CAS  Google Scholar 

  36. W.L. Li, W.P. Cao, D. Xu, W. Wang, W.D. Fei, Phase structure and piezoelectric properties of NBT–KBT–BT ceramics prepared by sol–gel flame synthetic approach. J. Alloys Compd. 613, 181–186 (2014)

    Article  CAS  Google Scholar 

  37. Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104, 124106 (2008)

    Article  Google Scholar 

  38. Y. Zhang, H. Sun, W. Chen, Influence of cobalt and sintering temperature on structure and electrical properties of BaZr0.05Ti0.95O3 ceramics. Ceram. Int. 41, 8520–8532 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50802066, 51072145, 51272191, 51372181, 51402005, 51672198), Innovative Public Service Platform Special Plan of Shandong (Grant No. 2014CXPT002), Primary Research Plan of Shandong Province (Grant No. 2016CYJS07A03-2), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3), and Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Sun, H. et al. Phase structure and electrical properties of lead-free (1 − 2x)NBT–xKBT–xBT ceramics. J Mater Sci: Mater Electron 29, 7851–7856 (2018). https://doi.org/10.1007/s10854-018-8784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8784-y

Navigation