Skip to main content

Advertisement

Log in

Review: nanoSPD-produced metallic materials for advanced medical devices

  • Processing Bulk Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Presently, special metallic materials (titanium and a number of its alloys, stainless steels, magnesium alloys, etc.) are extensively used for the manufacturing of many medical tools and devices and choosing the appropriate material is of vital importance as it determines the success and safety of the medical devices for their application. Recent years witnessed active research and development to improve the mechanical and functional properties of these biomaterials using their nanostructuring by means of severe plastic deformation (SPD) techniques. The specific nanostructural features induced by SPD processing in metallic biomaterials significantly contribute to their performance, which has been evidenced in a series of investigative activities conducted lately to improve existing metallic biomaterials and explore potential for their production capability. This paper presents a review of these works and considers the scientific principles of achieving a higher level of properties in the metallic biomaterials as well as related challenges and uncertainties, which forms the basis for the production of a new generation of medical implants with improved design and increased biofunctionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from reference [12]. Copyright 2008, John Wiley and Sons

Figure 2

Reproduced with permission from reference [32]. Copyright 2016, John Wiley and Sons

Figure 3

Reproduced with permission from reference [50]. Copyright 2020, Elsevier

Figure 4

Reproduced from reference [42], an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Copyright 2023 by the authors

Figure 5

Copyright 2020, Elsevier

Figure 6

Reproduced with permission from reference [70]. Copyright 2020, Elsevier

Figure 7

Copyright 2020, Elsevier

Figure 8

Copyright 2021, Elsevier

Similar content being viewed by others

References

  1. Valiev RZ, Straumal B, Langdon TG (2022) Using severe plastic deformation to produce nanostructured materials with superior properties. Ann Rev Mater Res 52:357–382. https://doi.org/10.1146/annurev-matsci-081720-123248

    Article  CAS  Google Scholar 

  2. Edalati K, Bachmaier A, Beloshenko VA et al (2022) Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater Res Lett 10(4):163–256. https://doi.org/10.1080/21663831.2022.2029779

    Article  CAS  Google Scholar 

  3. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2016) Fundmentals of superior properties in bulk nanoSPD materials. Mater Res Lett 4(1):1–21. https://doi.org/10.1080/21663831.2015.1060543

    Article  CAS  Google Scholar 

  4. Lowe TC, Valiev RZ (2014) Frontiers of bulk nanostructured metals in biomedical applications. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Wiley-Scrivener Publ, USA, pp 3–52

    Google Scholar 

  5. Floriano R, Edalati K (2023) Effects of severe plastic deformation on advanced biomaterials for biomedical applications: a brief overview. Mater Trans 64:1673–1682. https://doi.org/10.2320/matertrans.MT-MF2022043

    Article  CAS  Google Scholar 

  6. Valiev RZ, Parfenov EV, Parfenova LV (2019) Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater Trans 60:1356–1366. https://doi.org/10.2320/matertrans.MF201943

    Article  CAS  Google Scholar 

  7. Hanawa T (2010) Metals for biomedical devices. Woodhead Publishing Limited, Oxford

    Google Scholar 

  8. Zheng YF, Gu XN, Witte A (2014) Biodegradable metals Mater Sci Eng R 77:1–43. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  9. Froes FH, Qian M (2018) Titanium in Medical and dental applications. Woodhead Publishing, Duxford

    Google Scholar 

  10. Brunette DM, Tengvall P, Textor M, Thomsen P (2003) Titanium in medicine. Springer-Verlag, Berlin

    Google Scholar 

  11. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  12. Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J (2008) Nanostructured titanium for biomedical applications. Adv Eng Mater 10:B15–B17. https://doi.org/10.1002/adem.200800026

    Article  CAS  Google Scholar 

  13. Valiev RZ, Sabirov I, Zemtsova EG, Parfenov EV, Dluhoš L, Lowe TC (2018). In: Froes F, Qian M (eds) Titanium in medical and dental applications. Woodhead Publishing, Duxford, pp 393–418

    Google Scholar 

  14. Gunderov DV, Polyakov AV, Semenova IP, Raab GI, Churakova AA, Gimaltdinova EI, Sabirov I, Segurado J, Sitdikov VD, Alexandrov IV, Enikeev NA, Valiev RZ (2013) Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater Sci Eng A 562:128–136. https://doi.org/10.1016/j.msea.2012.11.007

    Article  CAS  Google Scholar 

  15. Valiev RZ (2023) Nanostructural design of superstrong metallic materials by severe plastic deformation processing. Microstruct 3:2023004. https://doi.org/10.20517/microstructures.2022.25

    Article  CAS  Google Scholar 

  16. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M (2007) Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomater 28:3887–3895. https://doi.org/10.1016/j.biomaterials.2007.05.010

    Article  CAS  Google Scholar 

  17. Estrin Y, Ivanova EP, Michalska A, Truong VK, Lapovok R, Boyd R (2011) Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater 7:900–906. https://doi.org/10.1016/j.actbio.2010.09.033

    Article  CAS  PubMed  Google Scholar 

  18. Nie FL, Zheng YF, Wei SC, Wang DS, Yu ZT, Salimgareeva GK, Polyakov AV, Valiev RZ (2013) In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control. J Biomed Mater Res 101A:1694–1707. https://doi.org/10.1002/jbm.a.34472

    Article  CAS  Google Scholar 

  19. Matchin AA, Nosov EV, Stadnikov AA, Klevtsov GV, Rezyapova LR, Sayapina NA, Blinova EV, Valiev RZ (2023) In vivo studies of medical implants for maxillofacial surgery produced from nanostructured titanium. ACS Biomater Sci Eng 9(11):6138–6145. https://doi.org/10.1021/acsbiomaterials.3c00813

    Article  CAS  PubMed  Google Scholar 

  20. Estrin Y, Lapovok R, Medvedev AE, Kasper C, Ivanova E, Lowe TC (2018) Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation. In: Froes F, Qian M (eds) Titanium in medical and dental applications. Woodhead Publishing, Duxford, pp 419–454

    Google Scholar 

  21. Semenova I, Yakushina E, Nurgaleeva V, Valiev R (2009) Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties. Int J Mat Res 100:1691–1696. https://doi.org/10.3139/146.110234

    Article  CAS  Google Scholar 

  22. Saitova L, Hoeppel HW, Goeken M, Semenova IP, Valiev RZ (2009) Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use. Int J Fatig 31:322–331. https://doi.org/10.1016/j.ijfatigue.2008.08.007

    Article  CAS  Google Scholar 

  23. Semenova IP, Saitova LR, Raab GI, Korshunov AI, Zhu YT, Lowe TC, Valiev RZ (2006) Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation. Mater Sci Forum 503–504:757–762. https://doi.org/10.4028/MSF.503-504.757

    Article  Google Scholar 

  24. Stráský J, Janeĉek M, Semenova I, Čížek J, Bartha K, Harcuba P, Polyakova V, Gatina S (2018) Microstructure and lattice defects in ultrafine grained biomedical α+β and metastable β Ti alloys. In: Froes F, Qian M (eds) Titanium in medical and dental applications. Woodhead Publishing, Duxford, UK, pp 455–475

    Google Scholar 

  25. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001

    Article  PubMed  Google Scholar 

  26. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  PubMed  Google Scholar 

  27. Jorge AM Jr, Roche V, Pérez DAG, Valiev RZ (2023) Nanostructuring Ti-alloys by HPT: phase transformation, mechanical and corrosion properties and bioactivation. Mater Trans 64:1306–1316. https://doi.org/10.2320/matertrans.MT-MF2022014

    Article  CAS  Google Scholar 

  28. Xu W, Wu X, Figueiredo RB, Stoica M, Calin M, Eckert J, Langdon TG, Xia K (2009) Nanocrystalline body-centered cubic beta-titanium alloy processed by high-pressure torsion. Int J Mater Res 100:1662–1667. https://doi.org/10.3139/146.110229

    Article  CAS  Google Scholar 

  29. Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, Miyazaki T (2013) Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C 33:2499–2507. https://doi.org/10.1016/j.msec.2013.01.056

    Article  CAS  Google Scholar 

  30. Zafari A, Wei X, Xu W, Xia K (2015) Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: the role played by stress induced martensitic transformation. Acta Mater 97:146–155. https://doi.org/10.1016/j.actamat.2015.06.042

    Article  CAS  Google Scholar 

  31. Kazarinov N, Stotskiy A, Polyakov A, Valiev RZ, Enikeev N (2022) Finite element modeling for virtual design to miniaturize medical implants manufactured of nanostructured titanium with enhanced mechanical performance. Materials 15:7417. https://doi.org/10.3390/ma15217417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semenova IP, Klevtsov GV, Klevtsova NA, Dyakonov G, Matchin AA, Valiev RZ (2016) Nanostructured titanium for maxillofacial mini-implants. Adv Eng Mater 18:1216–1224. https://doi.org/10.1002/adem.201500542

    Article  CAS  Google Scholar 

  33. ISO 14602 Non-active surgical implants-Implants for Osteosynthesis particular requirements

  34. http://www.instron.com/en/testing-solutions/by-test-type/simple-cyclic/orthopedic-micro-implants

  35. Virtanen S (2011) Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng B 176:1600–1608. https://doi.org/10.1016/j.mseb.2011.05.028

    Article  CAS  Google Scholar 

  36. Lafont A, Yang Y (2016) Magnesium stent scaffolds: DREAMS become reality. Lancet 387(10013):3–4. https://doi.org/10.1016/s0140-6736(15)00804-1

    Article  PubMed  Google Scholar 

  37. Zheng Y (2016) Magnesium alloys as degradable biomaterials. CRC Press, Taylor & Francis Group, Boca Raton, FL.

  38. Haenzi AC, Sologubenko AS, Uggowitzer PJ (2009) Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications. Int J Mater Res 100:1127–1136. https://doi.org/10.3139/146.110157

    Article  CAS  Google Scholar 

  39. Witte F, Hort N, Feyerabend F, Vogt C (2011) Magnesium Corrosion: a challenging concept for degradable implants. In: Corrosion of Magnesium Alloys. (Ed) Song G, Woodhead, Philadelphia, pp. 403–425

  40. Dobatkin SV, Lukyanova EA, Martynenko NS et al (2017) Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conf Ser: Mater Sci Eng 194:012004. https://doi.org/10.1088/1757-899x/194/1/012004

    Article  CAS  Google Scholar 

  41. Li WT, Liu X, Zheng YF et al (2020) In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomater Sci 8:5071–5087. https://doi.org/10.1039/d0bm00805b

    Article  CAS  PubMed  Google Scholar 

  42. Vinogradov A, Merson E, Myagkikh P, Linderov M, Brilevsky A, Merson D (2023) Attaining high functional performance in biodegradable Mg alloys: an overview of challenges and prospects for the Mg–Zn–Ca system. Materials 16(3):1324. https://doi.org/10.3390/ma16031324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carvalho AP, Figueiredo RB (2023) An overview of the effect of grain size on mechanical properties of magnesium and its alloys. Mater Trans 64:1272–1283. https://doi.org/10.2320/matertrans.MT-MF2022005

    Article  CAS  Google Scholar 

  44. Krzysztof B, Jelena H (2023) Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: an overview. Mater Trans 64:1709–1723. https://doi.org/10.2320/matertrans.MT-MF2022056

    Article  Google Scholar 

  45. Sun WT, Qiao XG, Zheng MY, Xu C, Kamado S et al (2018) Altered Aging behavior of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Mater 151:260–270. https://doi.org/10.1016/j.actamat.2018.04.003

    Article  CAS  Google Scholar 

  46. Khan AR, Grewal NS, Zhou C, Kunshan Y, Zhang HJ, Jun Я (2023) Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses. Results Eng 20:101526. https://doi.org/10.1016/j.rineng.2023.101526

    Article  CAS  Google Scholar 

  47. Wang H, Estrin Y, Fu H, Song G, Zuberova Z (2007) The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv Eng Mater 9:967–972. https://doi.org/10.1002/adem.200700200

    Article  Google Scholar 

  48. Hadzima B (2008). In: Estrin Y, Maier HJ (eds) Nanomaterials by severe plastic deformation IV, Pts 1 and 2. Trans Tech Publications, Goslar, Germany, pp 994–999

    Google Scholar 

  49. Minarik P, Kral R, Janecek M (2013) Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl Surf Sci 281:44–48. https://doi.org/10.1016/j.apsusc.2012.12.096

    Article  CAS  Google Scholar 

  50. Parfenov EV, Kulyasova OB, Mukaeva VR et al (2020) Influence of ultra-fine grain structure on corrosion behavior of biodegradable Mg-1Ca alloy. Corros Sci 163:108303. https://doi.org/10.1016/j.corsci.2019.108303

    Article  CAS  Google Scholar 

  51. Kutniy KV, Papirov II, Tikhonovsky MA et al (2009) Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants. Mater Und Werkst 40:242–246. https://doi.org/10.1002/mawe.200900434

    Article  CAS  Google Scholar 

  52. Pachla W, Mazur A, Skiba J, Kulczyk M, Przybysz S (2012) Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure. Int J Mater Res 103:580–589. https://doi.org/10.3139/146.110721

    Article  CAS  Google Scholar 

  53. Tong LB, Zheng MY, Chang H, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y (2009) Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing. Mater Sci Eng A 523:289–294. https://doi.org/10.1016/j.msea.2009.06.021

    Article  CAS  Google Scholar 

  54. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E (2014) Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 53:283–292. https://doi.org/10.1016/j.matdes.2013.06.055

    Article  CAS  Google Scholar 

  55. Bazhenov VE, Li AV, Komissarov AA et al (2021) Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys. J Magnes Alloy 9:1428–1441. https://doi.org/10.1016/j.jma.2020.11.008

    Article  CAS  Google Scholar 

  56. Xiao C, Shi XY, Yu WT et al (2021) In vivo biocompatibility evaluation of Zn-00.5Mg-(0, 0.5, 1 wt%)Ag implants in New Zealand rabbits. Mater Sci Eng C 119:111435. https://doi.org/10.1016/j.msec.2020.111435

    Article  CAS  Google Scholar 

  57. Yang H, Jia B, Zhang Z et al (2020) Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun 11:401. https://doi.org/10.1038/s41467-019-14153-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang L, He Y, Zhao H, Xie H, Li S, Ren Y, Qin G (2018) Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02 wt%Mg alloy wires during room-temperature drawing process. J Alloys Compd 740:949–957. https://doi.org/10.1016/j.jallcom.2018.01.059

    Article  CAS  Google Scholar 

  59. Huang H, Li G, Jia Q et al (2022) Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater 152:1–18. https://doi.org/10.1016/j.actbio.2022.08.041

    Article  CAS  PubMed  Google Scholar 

  60. Demirtas M, Yanar HA, Purcek G (2018) Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG / FG Zn–Al alloys processed by ECAP. Lett Mater 8(4):532–537

    Article  Google Scholar 

  61. Zaid AIO, AlKasasbeh JAS, Al-Qawabah SMA (2015) Effect of addition of some grain refiners to Zinc-Aluminum 22, ZA22, alloy on its grain size, mechanical characteristics in the cast and after pressing by the equal channel angular pressing, ECAP. Adv Mater Res 1105:172–177

    Article  Google Scholar 

  62. Li G, Yang H, Zheng Y, Chen XH, Yang JA, Zhu D, Ruan L, Takashima K (2019) Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomater 97:23–45. https://doi.org/10.1016/j.actbio.2019.07.038

    Article  CAS  PubMed  Google Scholar 

  63. Li G, Chen D, Mine Y, Takashima K, Zheng Y (2023) Fatigue behavior of biodegradable Zn–Li binary alloys in air and simulated body fluid with pure Zn as control. Acta Biomater 168:637–649. https://doi.org/10.1016/j.actbio.2023.07.030

    Article  CAS  PubMed  Google Scholar 

  64. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  65. Cantor B, Chang I, Knight P, Vincent A (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  66. Li HF, Xie XH, Zhao K, Wang YB, Zheng YF, Wang WH, Qin L (2013) In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater 9:8561–8573. https://doi.org/10.1016/j.actbio.2013.01.029

    Article  CAS  PubMed  Google Scholar 

  67. Ghiban B, Popescu G, Dumitrescu D, Soare V (2017) New high entropy alloy for biomedical applications. Key Eng Mater 750:180–183. https://doi.org/10.4028/www.scientific.net/KEM.750.180

    Article  Google Scholar 

  68. Wang SP, Xu J (2017) TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng C 73:80–89. https://doi.org/10.1016/j.msec.2016.12.057

    Article  CAS  Google Scholar 

  69. Newell К, Wang Z, Arias I, Mehta A, Sohn Y, Florczyk S (2018) Direct-contact cytotoxicity evaluation of CoCrFeNi-based multi-principal element alloys. J Funct Biomater 9:59. https://doi.org/10.3390/jfb9040059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edalati P, Floriano R, Tang Y, Mohammadi A, Pereira KD, Luchessi AD, Edalati K (2020) Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Mater Sci Eng C 112:110908. https://doi.org/10.1016/j.msec.2020.110908

    Article  CAS  Google Scholar 

  71. Edalati P, Mohammadi A, Tang Y, Floriano R, Fuji M, Edalati K (2021) Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Mater Lett 302:130368. https://doi.org/10.1016/j.matlet.2021.130368

    Article  CAS  Google Scholar 

  72. Hori T, Nagase T, Todai M, Matsugaki A, Nakano T (2019) Development of non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. Scr Mater 172:83–87. https://doi.org/10.1016/j.scriptamat.2019.07.011

    Article  CAS  Google Scholar 

  73. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39. https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  74. Levitas VI (2019) High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils. Mater Trans 60:1294–1301. https://doi.org/10.2320/matertrans.MF201923

    Article  CAS  Google Scholar 

  75. Mazilkin A, Straumal B, Kilmametov A, Straumal P, Baretzky B (2019) Phase transformations induced by severe plastic deformation. Mater Trans 60:1489–1499. https://doi.org/10.2320/matertrans.MF201938

    Article  CAS  Google Scholar 

  76. Alexandrov IV, Zhu YT, Lowe TC, Valiev RZ (1998) Severe plastic deformation: new technique for powder consolidation and grain size refinement. Powder Metall 41:11–13. https://doi.org/10.1179/pom.1998.41.1.11

    Article  CAS  Google Scholar 

  77. Zhilyaev AP, Gimazov AA, Raab GI, Langdon TG (2008) Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Mater Sci Eng A 486:123–126. https://doi.org/10.1016/j.msea.2007.08.070

    Article  CAS  Google Scholar 

  78. Han JK, Jang JI, Langdon TG, Kawasaki M (2019) Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion. Mater Trans 60:1131–1138. https://doi.org/10.2320/matertrans.MF201908

    Article  CAS  Google Scholar 

  79. Bachmaier A, Pippan R (2019) High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties. Mater Trans 60:1256–1269. https://doi.org/10.2320/matertrans.MF201930

    Article  CAS  Google Scholar 

  80. Edalati K, Uehiro R, Fujiwara K et al (2017) Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater Sci Eng A 701:158–166. https://doi.org/10.1016/j.msea.2017.06.076

    Article  CAS  Google Scholar 

  81. Edalati K (2019) Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process. Mater Trans 60:1221–1229. https://doi.org/10.2320/matertrans.MF201914

    Article  CAS  Google Scholar 

  82. Edalati K (2023) Superfunctional materials by ultra-severe plastic deformation. Materials 16:587. https://doi.org/10.3390/ma16020587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campos-Quirós A, Cubero-Sesín JM, Edalati K (2020) Synthesis of nanostructured biomaterials by high-pressure torsion: effect of niobium content on microstructure and mechanical properties of Ti–Nb alloys. Mater Sci Eng A 795:139972. https://doi.org/10.1016/j.msea.2020.139972

    Article  CAS  Google Scholar 

  84. González-Masís J, Cubero-Sesin JM, Campos-Quirós A, Edalati K (2021) Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion. Mater Sci Eng A 825:141869. https://doi.org/10.1016/j.msea.2021.141869

    Article  CAS  Google Scholar 

  85. Raabe D, Sander B, Friak M, Ma D, Neugebauer J (2007) Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater 55:4475–4487. https://doi.org/10.1016/j.actamat.2007.04.024

    Article  CAS  Google Scholar 

  86. Hanada S, Ozaki T, Takahashi E, Watanabe S, Yoshimi K, Abumiya T (2003) Composition dependence of Young’s modulus in beta titanium binary alloys. Mater Sci Forum 426–432:3103–3108. https://doi.org/10.4028/www.scientific.net/msf.426-432.3103

    Article  Google Scholar 

  87. Semlitsch MF, Weber H, Streicher RM, Schön R (1992) Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials 13:781–788. https://doi.org/10.1016/0142-9612(92)90018-j

    Article  CAS  PubMed  Google Scholar 

  88. Chen F, Gu Y, Xu G, Cui Y, Chang H, Zhou L (2020) Improved fracture toughness by microalloying of Fe in Ti-6Al-4V. Mater Des 185:108251. https://doi.org/10.1016/j.matdes.2019.108251

    Article  CAS  Google Scholar 

  89. Long M, Rack HJ (1998) Titanium alloys in total joint replacement: a materials science perspective. Biomaterials 19:1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  CAS  PubMed  Google Scholar 

  90. Niinomi M (2019) Design and development of metallic biomaterials with biological and mechanical biocompatibility. J Biomed Mater Res A 107:944–954. https://doi.org/10.1002/jbm.a.36667

    Article  CAS  PubMed  Google Scholar 

  91. Boyer R, Welsch G, Collings EW (1998) Materials properties handbook: titanium alloys. ASM International Materials Park, USA

    Google Scholar 

  92. Elias CN, Fernandes DJ, Moura De Souza F, dos Santos ME, de Biasi RS (2019) Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J Mater Res Technol 8:1060–1069. https://doi.org/10.1016/j.jmrt.2018.07.016

    Article  CAS  Google Scholar 

  93. Vishnu J, Sankar M, Rack HJ, Rao N, Singh AK, Manivasagam G (2020) Effect of phase transformations during aging on tensile strength and ductility of metastable beta titanium alloy Ti-35Nb-7Zr-5Ta-035O for orthopedic applications. Mater Sci Eng A 779:139127. https://doi.org/10.1016/j.msea.2020.139127

    Article  CAS  Google Scholar 

  94. Zhang DC, Yang S, Wei M, Mao YF, Tan CG, Lin JG (2012) Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys. J Mech Behav Biomed Mater 13:156–165. https://doi.org/10.1016/j.jmbbm.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  95. Çaha I, Alves AC, Kuroda PAB, Grandini CR, Pinto AMP, Rocha LA, Toptan F (2020) Degradation behavior of Ti–Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corros Sci 167:108488. https://doi.org/10.1016/j.corsci.2020.108488

    Article  CAS  Google Scholar 

  96. Senkov ON, Semiatin SL (2015) Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloys Compd 649:1110–1123. https://doi.org/10.1016/j.jallcom.2015.07.209

    Article  CAS  Google Scholar 

  97. Edalati K, Lee S, Horita Z (2012) Continuous high-pressure torsion using wires. J Mater Sci 47:473–478

    Article  CAS  Google Scholar 

  98. Ivanisenko Y, Kulagin R, Fedorov V, Mazilkin A, Scherer T, Baretzky B, Hahn H (2016) High pressure torsion extrusion as a new severe plastic deformation process. Mater Sci Eng A 664:247–256

    Article  CAS  Google Scholar 

  99. Edalati K, Ikoma Y, Horita Z (eds) (2018) Proceedings of the international workshop on giant straining process for advanced materials (GSAM), IRC-GSAM, Kyushu Univ., Fukuoka, Japan

  100. Lowe TC, Valiev RZ, Li X, Ewing B (2021) Commercialization of bulk nanostructured metals and alloys. MRS Bull 46:265–272. https://doi.org/10.1557/s43577-021-00060-0

    Article  CAS  Google Scholar 

  101. NanoSPD8 (2023) https://nanospd8.iisc.ac.in/docs/Abstract_Booklet.pdf

Download references

Acknowledgements

Author (RZV) acknowledges the support in part from Russian Science Foundation (Grant No. 22-19-00445) and in part the Megagrant State Program (agreement 075-15-2022-1114 dated by 30 June 2022).

Author information

Authors and Affiliations

Authors

Contributions

RZV and KE: Conceptualization, Experimental design, Original draft preparation. RZV: Manuscript composition. RZV, YZ, KE: Writing—review and editing.

Corresponding author

Correspondence to Ruslan Z. Valiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data and code availability

The data that support the findings of this study are all own results of the authors, not available anywhere.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiev, R.Z., Zheng, Y. & Edalati, K. Review: nanoSPD-produced metallic materials for advanced medical devices. J Mater Sci 59, 5681–5697 (2024). https://doi.org/10.1007/s10853-024-09464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09464-0

Navigation